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BRAIN COMPUTER INTERFACE 

STATEMENT REGARDING FEDERALLY 
SPONSORED RESEARCH OR DEVELOPMENT 

This invention is based in part on research performed with 
U.S. government grant Support under grant numbers 
NS41272, HD301.46 and EB00856 from the National Insti 
tutes of Health. The U.S. government has certain rights in 
the invention. 

RELATED APPLICATIONS 

Not applicable. 

REFERENCE TO ASEQUENCE LISTING 

Not applicable. 

BACKGROUND OF THE INVENTION 

1. Field of the Invention 
This invention relates in general to the fields of bioengi 

neering and computer technology, and more particularly to 
a novel brain-computer interface and related methods 
involving generating electrical outputs from raw brain sig 
nals. 

2. Description of the Related Art 
Brain-computer interfaces (BCI) are systems that provide 

communications between human beings and machines. 
BCI's can be used, for example, by individuals to control an 
external device such as a wheelchair. A major goal of 
brain-computer interfaces (BCI) is to decode intent from the 
brain activity of an individual, and signals representing the 
decoded intent are then used in various ways to communi 
cate with an external device. BCI's hold particular promise 
for aiding people with severe motor impairments. 

Several signal acquisition modalities are currently used 
for BCI operation in human and non-human primates. These 
include electroencephalographic signals (EEG) acquired 
from Scalp electrodes, and single neuron activity assessed by 
microelectrodes arrays or glass cone electrodes. EEG is 
considered a safe and non-invasive modality, but has low 
spatial resolution and a poor signal to noise ratio due to 
signal attenuation by the skull, and signal contamination 
from muscle activity. In contrast, single-unit recordings of 
the signals from an individual neuron convey a significantly 
finer spatial resolution with higher information transfer rates 
and enable the use of more independent channels. However, 
single unit recordings require close proximity (within 100 
microns) with neurons and therefore are not generally Suit 
able for human applications because of the much higher 
associated clinical risk, and the lack of durable effect sec 
ondary to scar formation around the electrodes. 
BCI systems that have achieved closed loop, continuous, 

and real time control in human Subjects are known and 
typically utilize EEG signal. Most closed loop trials using 
Such systems have utilized low frequency band power 
changes associated with sensorimotor cortex, known as the 
mu and beta rhythms. The mu and beta rhythms are thought 
to be the product of thalamocortical circuits that show 
Suppressed frequency power on cortical activation. These 
power Suppressions, also known as Event Related Descyn 
chronizations (ERD), can be induced by both actual and 
imagined motor movements. The mu rhythms (8–12 HZ) and 
beta rhythms (18-26 Hz) are separable in regards to timing 
and topographical distribution, but tend to show diffuse 
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bilateral (contralateral dominant) Suppression with a given 
motor activity. Additionally, more regionally specific higher 
frequency bands, known as gamma rhythms, have also been 
investigated. The gamma band (>30 HZ) is often associated 
with an increased power (Event Related Synchronization— 
ERS) in association with cortical activation and has been 
postulated to be associated with motor programming, atten 
tion, and sensorimotor integration. These higher frequency 
oscillations have not been utilized in a BCI system. 

U.S. Pat. No. 5,638,826 (Wolpaw) describes a BCI system 
using electroencephalographic signal (EEG) in which mu 
rhythm suppressions (8–12 Hz) are utilized. 

U.S. Pat. No. 6,349.231 describes a hybrid BCI based on 
EEG brain waves in combination with the biopotentials 
produced by muscles, heart rate, eye movements, and eye 
blinks. 

However, known BCI systems remain limited by the 
constraints on spatial resolution and signal strength imposed 
by the chosen signaling modality, such as the constraints 
imposed by using EEG. Therefore, a need remains for 
improved BCI systems that are more readily adaptable to 
human clinical applications. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is an analysis of variance of frequency changes for 
a given active task condition (in the example, imagining 
saying the word “move') Versus an inactive rest condition; 

FIG. 2 is a schematic diagram of signal processing in an 
ECoG-based BCI; 

FIG. 3a is a block diagram of a first exemplary embodi 
ment of an ECoG-based BCI; 

FIG. 3b is a block diagram of a second exemplary 
embodiment of an ECoG-based BCI; 

FIG. 4a shows an exemplary subdural electrode grid used 
in the ECoG-based BCI; 

FIG. 4b is shows the exposed cortical surface of a human 
patient with epilepsy, before placement of the subdural 
electrode grid; 

FIG. 4c shows the placement of the subdural electrode 
grid over the cortical surface shown in FIG. 4b, 

FIG. 4d is an X-ray image of the skull of human patient 
of FIGS. 4b and 4c, showing the placement of the subdural 
electrode grid after Surgical closure of the scalp; 

FIG. 5 is a graphical representation of a spectral analysis 
and analysis of variance of responses from a select electrode 
location in the electrode array while the human patient is 
performing a specific task (e.g., imagining saying the Word 
“move' versus rest); 

FIG. 6 is a graphical representation of an algorithm used 
to correlate specific brain signals to specific behavioral 
conditions of the human patient, using the ECoG-based BCI; 

FIG. 7 is a figure correlating cortical anatomy, closed loop 
electrodes, functional stimulation, and regions of frequency 
power change induced by various motor, speech, and cog 
nitive activities; 

FIG. 8 is a bar graph demonstrating how often a given 
Subject was able to produce statistically significant fre 
quency power changes that could be utilized for online 
closed loop control; 

FIG. 9 is a table showing the position of 4 targets 
predicted from ECoG signal relative to the actual target 
position using a neural network analysis model; 

FIG. 10 is a graph showing improvement in human 
Subjects performance on closed-loop feedback tasks using 
the ECoG-based BCI; 
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FIG. 11 is a graphical comparison of signal features 
produced by either (a) middle finger or (b) thumb movement 
when compared against rest; and 

FIG. 12 is a table of topograms from one subject showing 
regional frequency changes at 18 Hz (left column), and 40 
HZ (right column) with a given task including tongue 
protrusion, repetitive speech, and verb generation. 

DETAILED DESCRIPTION OF THE 
INVENTION 

The features, aspects and advantages of the present inven 
tion will become better understood with reference to the 
following description, examples and appended claims. 

Definitions 
To facilitate understanding of the invention, certain terms 

as used herein are defined below as follows: 
As used interchangeably herein, the terms “ECOG” and 

“electrocorticography” refer to the technique of recording 
the electrical activity of the cerebral cortex by means of 
electrodes placed directly on it, either under the dura mater 
(subdural) or over the dura mater (epidural) but beneath the 
skull. 
As used interchangeably herein, the terms “BCI and 

“brain computer interface” refer to a signal-processing cir 
cuit that takes input in the form of raw brain signals and 
converts the raw signals to a processed signal that can be 
input to a digital device for storage and further analysis. 
As used herein, the term “BCI system” refers to an 

organized scheme of multiple components including a BCI 
as defined above, that together serve the function of trans 
lating raw brain signals to an output of a device, where the 
raw signals are derived from the central nervous system of 
a user of the system. 
As used herein, the term “device' refers to a piece of 

equipment or a mechanism designed to serve a special 
purpose or function. In the examples, the device is a cursor 
on a video monitor. Other examples of devices within the 
intended meaning of the term include, without limitation, 
wheelchairs and prosthestics. The term also embraces 
mechanisms that can be used to control other mechanisms, 
Such as steering wheels, joysticks, levers, buttons and the 
like. 
The invention is based in part on the discovery that ECOG 

signals can be successfully used in a BCI to control an 
external device in real time, and further in part on the 
Surprising finding that ECoG signals can provide informa 
tion required for control in at least two-dimensions. Prior to 
the present invention, the use of ECOG signals in a BCI had 
not been demonstrated. 

Until about twenty years ago, the overwhelmingly domi 
nant paradigm for investigating the physiologic and ana 
tomic bases of cognitive function in humans was based on 
analysis of brain lesions. More recently, techniques such as 
functional magnetic resonance imaging (fMRI), positron 
emission tomography (PET), single photon emission com 
puterized tomography (SPECT), and electrophysiological 
analyses such as electroencephalography (EEG), magne 
toencephalography (MEG), and electrocorticography 
(ECoG) have become available. While these technologies 
have allowed researchers to go beyond the traditional 
approach of lesional analyses, each retains some limitations. 

Functional neuroimaging has been defined as the “process 
of assigning a physiologic parameter indexing some aspect 
of brain function to a spatial representation of the brain.” 
(Graboski and Damasio, 2000). The dominant technologies 
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4 
of this sort are fMRI using blood oxygenation level depen 
dent (BOLD) contrast and PET using 'OHO tracer. 
These technologies assess changes in physiologic processes 
Such as blood flow, blood oxygenation, and glucose metabo 
lism, which are believed to be coupled to local synaptic 
activity. (Villringer and Dirnagl, (1995): Jueptner and 
Weiller (1995)). As a result, both techniques have provided 
new opportunities for spatially delineating regions associ 
ated with various aspects of human cognitive function. 
However, the spatial and temporal resolution of these meth 
ods is relatively coarse due to a reliance on metabolic and 
hemodynamic response. The optimal resolution of fMRI is 
approximately 1-5 mm spatially and 1–2 seconds tempo 
rally, and for PET is about 1 cm spatially and 10 seconds 
temporally. Additionally, the precise relationship between 
underlying neuronal events and the metabolic and hemody 
namic responses subserving fMRI and PET is not well 
understood. Accordingly, fMRI and PET data can be difficult 
to interpret, as demonstrated by the assessment of functional 
measures in the context of synaptic inhibition and the 
interpretation of decreased blood flow or metabolism for a 
given cognitive activity. 

Another approach to investigating brain function involves 
the use of electrical signals of brain activity, which provides 
the basis for methods such as EEG, MEG, and ECoG. Such 
techniques are complementary to the more anatomic 
approaches of PET and fMRI, allowing for improved tem 
poral resolution and a more direct assessment of the elec 
trophysiologic dynamics associated with various brain 
induced events. 

EEG, MEG and ECOG provide signals with features that 
are associated with cortically related events. Such features 
include time-locked neuronal changes induced by sensory 
stimuli known as event related potentials (ERPs), or ongoing 
non-phase-locked fluctuations associated with frequency 
power changes. ERPs are thought to be a series of transient 
post synaptic responses of main pyramidal neurons triggered 
by a specific stimulus. The frequency power changes are 
hypothesized to be due to an increase or decrease in the 
synchrony of the intrinsic oscillations of the underlying 
neuronal populations. 

Certain frequency bands have been identified with certain 
types of cortical activation. Alpha rhythms (over visual 
cortex) and mu rhythms (over Somatosensory cortex) are 
8-12 Hz and are thought to be the product of thalamocortical 
circuits which show Suppressed frequency power on cortical 
activation. These power Suppressions are also known as 
Event Related Descynchronizations (ERD). The mu rhythms 
can also often associated with beta rhythms (18–26 Hz) but 
are separable in regards to timing and topographical distri 
bution. More regionally specific higher frequency bands, 
known as gamma rhythms (>30 Hz), have also been inves 
tigated. The gamma band is often associated with an 
increased power (Event Related Synchronization—ERS) in 
association with cortical activation and has been postulated 
to be associated with motor programming, attention, and 
sensorimotor/multimodal sensory integration. 
EEG has been the most commonly used technique for 

acquiring these electrical signals of brain activity because 
EEG is non-invasive and therefore low risk, is relatively 
low-cost, and is widely applicable. However, due to signal 
attenuation by the skull and electrical noise contamination 
from muscle activity, the signal-to-noise ratio of EEG is low 
and the spatial and frequency resolution is poor. The maxi 
mal spatial discrimination with EEG is approximately 3 
centimeters and the appreciable frequency range is 0–40 Hz. 
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Magnetoencephalography is also a non-invasive modality 
with a similar profile as that of EEG, but has an improved 
spatial resolution of approximately 4 to 10 millimeters. In 
contrast, ECOG requires a craniotomy for electrode place 
ment. Though invasive, the ECoG platform provides a 
combination of high spatial resolution on the order of 1–2 
mm with a broader frequency range of approximately 0200 
HZ. 

Conventional (i.e., EEG-based) BCI systems use very 
specific brain signals in limited frequency ranges below 40 
Hz. Examples of such signals include the mu?beta rhythms 
(around 10/20 Hz, respectively), slow cortical potentials, 
and P300 evoked potentials. In contrast, since ECoG signals 
have a much higher frequency range, and higher spatial 
resolution, ECOG signals exhibit different signal character 
istics. Accordingly, electrode locations or frequencies that 
are used in conventional EEG-based systems are not helpful 
in ECoG-based systems. Until now, the electrode configu 
rations, frequencies and signal characteristics useful in 
ECoG-based systems though investigated have never been 
used and defined for online control. The present ECoG 
based BCI system uses a distinct set of signal characteristics 
and analyses. 

Electrocorticography signals have not yet been used in a 
BCI system enabling an individual to maintain continuous 
device control in real time and with continuous feedback 
using electrocorticographic signals. However, ECoG activ 
ity is well-suited for BCI applications. The ECoG signal is 
recorded from electrodes positioned at the brain surface, 
with lower clinical risks than intra-cortical electrode 
devices, while at the same time offering a much more robust 
signal than EEG, both in terms of spatial and resolution and 
temporal resolution. The ECoG signal magnitude is typi 
cally five to ten times larger (0.05—1.0 mV versus 0.01–0.02 
mV for EEG) than EEG, has a much higher spatial resolution 
as it relates to electrode spacing (0.125 cm versus 3.0 cm for 
EEG), and has more than four times the frequency band 
width of EEG (0–200 Hz versus 0–40 Hz for EEG). Thus, 
ECoG signals represent a smaller population of neurons than 
does EEG, and discriminate across a broader range of 
frequencies including frequencies greater than 40 Hz. An 
ECoG-based BCI not only enables the full use of mu 
rhythms, but also the use of the much higher frequency 
bands (beta and gamma) that are thought to be more closely 
associated with higher specific cortical function. 

Signal analysis of brain signals generated by ECOG 
demonstrates how ECoG signals compare very favorably to 
EEG signals. FIG. 1 shows an example of a standard spectral 
analysis of variance of frequency changes for a human 
Subject during a given active condition (for example, imag 
ining saying the word “move') Versus the rest, inactive 
condition. The channels are the ordinate (y) axis and the 
frequency is the abscissa (X) axis. The ranges appreciable by 
EEG and ECoG are shown. The data gathered from each of 
the 32 electrodes with each of the tasks was used to identify 
the frequency bands in which amplitude was different 
between the task and rest. FIG. 1 illustrates these analyses 
for a given Subject. In this example, the Subjects task was 
to imagine saying the word “move.” FIG. 1 demonstrates 
that the range of reactive frequencies extends well beyond 
40–50 Hz, which is the maximum value reported for EEG 
based systems. Moreover, unlike EEG signals, the signal 
to-noise ratio of the ECoG signal is improved by the skull 
rather than attenuated, and ECoG signals are not contami 
nated by muscle electrical activity. 

In addition, the subdural electrodes from which the ECoG 
signal is derived do not need to penetrate cortex as is 
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6 
required with microelectrode systems. Therefore, Scarring 
and Subsequent encapsulation of the recording sites is less of 
a factor with ECoG electrodes than with intra-cortical 
microelectrodes. It is expected that these characteristics will 
translate to increased implant viability over time, which is an 
important consideration for clinical applications. 

Accordingly, the present invention uses ECoG signals in 
a BCI system and related methods, and is based in part based 
on the surprising discovery that ECoG-based BCI provides 
novel and unexpected advantages over BCI's using EEG or 
other signal acquisition platforms. The ECoG-based system 
unexpectedly requires much less time than required with 
EEG-based BCI systems for a user to learn to gain control 
and improve performance. ECOG signal control is achieved 
following a single training session of an hour or less, and 
learning can occur over minutes. In contrast, control of EEG 
signal takes much longer to achieve and learning occurs over 
a time course of days to weeks. In addition, the higher spatial 
and signal resolution of ECOG relative to EEG allows for 
two or more degrees of freedom of control. With ECoG 
signals, the information for two-dimensional discrimination 
is present with a very coarsely spaced electrode array. 
Additionally, individual finger movements can be distin 
guished with ECOG, which has never been seen with EEG. 
The likelihood that more degrees of freedom can be 
achieved with a higher density electrode array is very high. 
Moreover, unlike EEG, the ECoG-based system utilizes 
non-sensorimotor signals and tasks. For example, the ECoG 
based system enables the use of speech tasks that drive brain 
signaling in speech cortex, including Broca's speech center, 
and premotor cortex. An individual thinking about the word 
“move generates signals in speech cortex that are acces 
sible to ECOG, which are then used to gain overt control over 
an external device. 

FIG. 2 is a schematic diagram of the signal processing in 
an ECoG-based BCI. An exemplary ECoG-based BCI sys 
tem and related methods use ECoG signal from the brain and 
translate that activity into the intent of the user. ECOG signal 
can be acquired using an electrode array that is either under 
the dura mater (subdural) or over the dura mater (epidural), 
although in an exemplary embodiment the electrode array is 
Subdural. The signal is routed to the acquisition computer 
either directly through lead wires or indirectly through a 
wirelessly transmitted signal. A computer is further config 
ured to analyze the ECoG signal to determine the intent of 
the user. The intent of the user is then communicated to a 
device. Such as a screen cursor, or a wheelchair or prosthetic 
device to control the device accordingly. The BCI configu 
ration enables this control continuously and in real time, 
using closed loop feedback to the user. 

In an exemplary embodiment, signal acquisition hardware 
is typically a Subdural electrode array, which is implanted 
beneath the dura mater of the user and generates the raw 
ECoG signal. The signal is passed through an amplifier and 
a band pass filter. The signal is then provided as an input to 
a computer running software configured to extract features 
of the signal, apply a translation algorithm to the signal 
features as they vary under varying behavioral conditions of 
the user, and then generate a device command derived from 
the processed, translated signal. In one embodiment, the 
device command is communicated to a user screen on a 
computer monitor, and controls the position of a cursor on 
the screen. For training of the user on the ECoG-based BCI, 
the position of the cursor provides visual feedback to the 
user as to the effect of the user's brain signals on the cursor 
position. The user then uses the feedback information to 
modify conscious instructions, thereby for improving accu 
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racy of cursor position control. The device command is also 
communicated to a controller screen, which serves to mani 
fest the intentions of the user. For example, when the user 
intends for the cursor to go up, the cursor moves up. 

FIG. 3a is a block diagram of one embodiment of the 
ECoG-based BCI in which the ECoG signal is routed 
through a network prior to being sent to a BCI computer. The 
user, having an ECoG electrode implant, views the user 
feedback screen. Raw ECOG signals from the ECoG elec 
trodes are passed to a data acquisition computer configured 
for collecting and storing the raw ECoG signal. Raw and 
processed signals from the acquisition computer, and the 
device command, are communicated via a local area net 
work to a computer or computers configured to provide 
signals for monitoring, for example in a monitoring room, 
and to an analog printing device. In an exemplary embodi 
ment, an XLTEK networking (available from XLTEK, 
Ontario, Canada) or similar system such as that available 
from Stellate (Montreal, Quebec, Canada) is used for the 
network and for the analog printer for pulling signals off the 
local network, and for signal processing on the network. The 
signal is further passed through a low pass-filter (e.g. from 
United Electronics Industries, Inc., Canton, Mass.) and to 
the BCI computer, which is a desktop computer configured 
for feature extraction, application of the translation algo 
rithm, and generation of a device command. For example, 
the BCI computer is configured in part for feature extraction 
by being capable of reading 32 channels in real time, with 
no more than a 60 msec lag. The device command is 
communicated to an output device, which in one embodi 
ment is a feedback screen for viewing by the user. 

FIG. 3b shows a system that is directly routed to the BCI 
computer, demonstrating a variation of the process in which 
the ECoG signal is sent directly to an amplifier, band pass 
filter, and analog-to-digital converter, (Such as, for example, 
g.USBamp, available from “g tec'. Guger Technologies, 
8020 Graz, Austria, Europe) and then subsequently sent to a 
BCI computer running the same programs configured for 
feature extraction, translational algorithm, and device com 
mands as previously described Supra. 

FIG. 4a is an exemplary subdural electrode grid used in 
the ECoG-based BCI. Suitable electrode arrays and related 
hardware are available from, for example, Ad Tech Medical 
Instrument Corporation (Racine, Wis.), and Radionics (Bur 
lington, Mass.). FIG. 4b shows the exposed cortical surface 
of a human subject with epilepsy, before placement of the 
subdural electrode grid shown in FIG. 4a. The arrow indi 
cates the central sulcus in the left hemisphere. FIG. 4c shows 
the placement of the electrode grid on the exposed cortical 
surface of the subject. For orientation purposes, the refer 
ence “Ant” refers to the anterior of the subject’s brain. FIG. 
4d is an X-ray image of the Subject’s skull from one side, 
showing the electrode grid in place after Surgical closure of 
the Subjects scalp. 

FIGS. 5a and b demonstrate the analysis of a given 
Subjects single electrode. In FIG. 5a, a spectral analysis is 
performed to compare an active condition with the inactive 
or rest condition. In the illustrated case, the active condition 
is imagining saying the word “move'. This example shows 
a pronounced decrease in power at 20 Hz in the active 
condition, as compared to the rest condition. The change in 
power between conditions is then further analyzed using a 
correlation of determination, or r, to assess the statistical 
significance of this change in power. In this example, ther 
is 0.3, indicating that the change in power is highly statis 
tically significant, Supporting the inference that whenever 
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8 
this individual imagines saying the word “move', a reliable 
depression in power exists at 20 Hz. 

FIG. 6 is a graphical representation of an algorithm used 
to correlate specific brain signals to specific behavioral 
conditions of the human patient, using the ECoG-based BCI. 
As shown supra in FIG. 5, a reliable correlation between a 
power change at a frequency specific band, once established, 
is then utilized by the BCI system for device control. In this 
example, as the BCI system continually acquires raw data 
from the patient, any point at which the system detects a 
specific depression in power at 20 Hz (through continued 
power spectra analysis using a continuous autoregressive 
analysis, (ARA)) is the basis for generating a signal to direct 
the cursor upward. In contrast, a baseline level of activity at 
20 Hz, is the basis for generating a signal for the cursor to be 
directed downwards. 

FIG. 7 includes schematic diagrams depicting anatomic 
location of electrodes, stimulation maps, screening results, 
and closed loop electrodes for all four subjects (AA, BB, 
CC, and DD). Lateral skull radiographs were used to deter 
mine stereotactic locations of the electrodes. Using a Talair 
ach atlas, the stereotactic locations were mapped to standard 
Brodmann surface locations. Each electrode is color coded 
to a standard anatomic Surface location as indicated in a first 
panel at right of FIG. 7. The triangles represent electrodes 
where overt activity (e.g. motor, sensory, speech) was either 
induced or Suppressed via electrical stimulation. These 
results are listed below each schematic, respectively. Below 
each electrode, various tabs indicate whether any statisti 
cally significant frequency changes (r'O.1) were induced 
for a given active condition versus rest, as indicated by the 
list of active tasks in a second panel at right of FIG. 7. 
Electrodes used for closed-loop control are circled. The 
tasks used for closed-loop control are listed below each 
schematic, respectively. 

Protocol for using the ECOG-based BCI involves a 
screening process, followed by signal feature extraction, and 
then a process of closing a feedback loop to the user, by 
which the user adapts control of his conscious instructions to 
the output of the BCI. 

FIG. 8 is a bar graph demonstrating how often each of the 
four Subjects was able to produce statistically significant 
frequency power changes that could be utilized for online 
closed loop control, as indicated by the largest r for all 
frequency bands and locations, for each active task condi 
tion. FIG. 8 shows that for the majority of patients and tasks, 
actual and imagined motor/speech tasks produced task 
related spectral changes. 

FIG. 9 shows use of particular features to predict the 
direction of the actual joystick movement, for subjects BB 
and DD. The accompanying table delineates the statistical 
significance of the various modeling methods using both 
four and eight targets. The predictions were highly corre 
lated with the actual movement directions and generalized to 
different data sets (see accompanying table). The top right 
panel of FIG. 9 illustrates the final predicted cursor position 
(red dots) and the actual target position (yellow stars) for 
subject DD and four targets. 

FIG. 10 shows learning curves for closed-loop experi 
ments. In all Subjects, performance improved over a short 
period (minutes). The Solid lines represent imagined tasks 
while the dashed lines represent actual tasks. 

FIG. 11 shows results of an analysis of signal variance for 
the 32 channel arrays. FIG. 11a shows the frequency band 
changes for active left middle finger movement versus rest 
(no finger movement). FIG. 11b shows the frequency band 
changes for active left thumb movement versus rest. Each 
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action of middle finger movement and thumb movement 
produce different changes with respect to channel and fre 
quency band. This allows for two independent signals to be 
controlled in parallel to allow for two dimensional control. 

In the initial screening process, during training sessions 
the brain signals of the user are examined and features of the 
brain signals (i.e., frequencies and locations) that are subject 
to user control are identified. The training sessions include, 
for example, multiple simple cognitive tasks that are 
selected on the basis of their activation of various, specific 
areas of cortex relative to the location of the electrode grid. 
Overt tasks are those tasks that require an overt motor output 
by the user, for example, of a hand, the tongue, or the mouth. 
Examples of overt tasks are opening and closing of the right 
hand, tongue protrusion, or saying the word “move'. Covert 
tasks are those that do not involve an overt motor output by 
the user, but instead require only conscious thought by the 
user of a specific action. Examples of covert tasks that 
correlate with the overt tasks previously listed are, respec 
tively, imagining opening and closing the right hand, imag 
ining protruding the tongue, and imagining saying the word 
“move'. Another example of an overt task is manipulation 
of a joystick to control movement of a screen cursor. Each 
user is instructed to perform overt and covert tasks. 

For each user, the ECoG signals generated during the 
performance of each task, and during rest, are collected, 
stored and analyzed. Features of the signals (i.e., signal 
frequencies and electrode locations) that vary systematically 
with the user's behavioral state are identified. Software in 
the BCI system is configured to correlate these features with 
the user's actions. For example, for each task, the spectral 
responses for all electrode locations and frequencies (i.e., 
features) between 0.1 and 220 HZ are compared to the 
spectral responses under rest conditions. The value ofri, i.e., 
the proportion of the response variance accounted for by the 
task, for each of these features is calculated. One or more 
electrode locations and one or more frequencies that were 
most closely correlated with a particular task are identified. 
The analysis of variance is then used to produce a map that 
identifies the electrode locations and signal frequencies that 
react to the particular task. 

Offline analysis entails, for example, periodically (e.g., 25 
times per second) Subjecting the ECoG brain signals to 
autoregressive spectral estimation (McFarland, 1997) that 
computes the spectral amplitude in a defined frequency 
range for all locations. A linear classifier then adds the 
spectral amplitudes for the channels and frequencies that are 
identified by the previous analyses, after multiplying them 
by specified weights determined by a user of the system. 
Subsequently, a linear transformation is performed on each 
output channel in order to create signals that have Zero mean 
and a specific value range. The output of the normalizer 
defines the control signal to be used by the output device and 
represents the output of the signal processing module. An 
additional statistics component updates in real-time the 
slope and the intercept of the linear equation that the 
normalizer applies to each output channel so as to compen 
sate for spontaneous or adaptive changes in the user's brain 
signals (see Ramoser, 1997; McFarland, 2003). 
An exemplary output device is a computer Screen. In an 

exemplary process of adapting to the BCI, the user watches 
the computer screen. After one second during which the 
screen is blank, a target appears either on the top or bottom 
right edge of the computer screen. One second later, a cursor 
appears on the left edge of the screen, and the cursor travels 
across the screen at a fixed rate. The cursor's vertical 
movement is controlled by the control signal calculated by 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

10 
the signal processing component. To the extent that the 
offline analyses identify a signal that the user can control, the 
user is then able to control the cursor movement in one 
dimension. 

After the screening protocol and the offline feature extrac 
tion and analysis, the BCI computer provides feedback 
output to the user, and the user is instructed to perform the 
same task that produced previously identified responses. The 
user then employs the feedback as a basis for modifying 
conscious instructions to the output device. In doing so, the 
user also modifies the device command output, and in an 
iterative process of calibration ultimately improves the accu 
racy of the device command and thus the device output, 
relative to the conscious intent of the user. Finally, a BCI 
system adapted to a particular user is then employed by the 
user to more accurately control the output device. 
The invention encompasses related methods. An exem 

plary embodiment is a method for providing control of a 
device to a user which includes providing an ECOG-based 
BCI to the user for determining an intent of the user from 
ECOG signals of the user's brain activity. The BCI deter 
mines the intent of the user and then communicates the 
intent to the device, thereby controlling the device. In one 
embodiment, a closed-loop feedback arrangement is used to 
adapt the ECoG-based BCI to the particular user, in which 
data reflecting the position of the device are provided to the 
user, and the user periodically compares the target position 
of the device with the actual position of the device. The user 
then employs this feedback as a basis for modifying the 
user's conscious thoughts with respect to control of the 
device, thereby improving the accuracy of control of the 
device with the BCI. 

EXAMPLES 

Without further elaboration, it is believed that one skilled 
in the art can, using the preceding description, utilize the 
present invention to its fullest extent. The following specific 
examples are offered by way of illustration only and not by 
way of limiting the remaining disclosure. 

Example 1 

Initial Screening Tasks 

An advantage of closed-loop, real-time control is that 
biofeedback can be used by the brain to adapt the cortical 
control signal. In order to test ECoG signals in a real-time 
BCI environment as well as to explore cortical plasticity in 
a closed-loop ECOG BCI system, subdural electrode grids 
were utilized in four subjects with intractable epilepsy who 
underwent temporary array placement to localize seizure 
foci prior to Surgery. The Subjects performed a series of 
motor and cognitive tasks while 32 ECoG channels were 
digitized and processed with BCI2000 software as described 
in Schalk et al., IEEE Trans Biomed Eng. 10, 1-10 (2003). 
All subjects were successful at achieving control of the 
cursor to hit the correct site for a significant percentage of 
the trials. Likewise, all four Subjects showed significant 
cortical signal adaptation which resulted in an improved 
cortical control over a period of minutes. 
The subjects in this study were patients in the Barnes 

Jewish Hospital NeuroSurgical and Epilepsy program. Sub 
jects were individuals with intractable epilepsy requiring the 
placement of subdural electrodes for seizure localization. 
Placement of the electrode arrays was based solely on the 
clinical judgment of the neuroSurgical and epilepsy team; 
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however, only those candidates who were to have subdural 
electrodes placed over a portion of sensorimotor cortex were 
chosen for this study. In all cases involved in this study, a 48 
or 64-electrode grid was placed over the left fronto-parietal 
temporal region. A standard grid consists of electrodes that 
are 2 mm in diameter and 10 mm apart. FIG. 4a shows an 
exemplary electrode grid, and FIGS. 4b, 4c, and 4d show 
placement of Such a grid on the exposed cortical Surface of 
a subject, as described in further detail supra. The four 
subjects included three males and one female with an 
average age of 29.8 years + 6.8 years. See Appendix, Table 
1 for additional information. Following initial Surgical 
placement of the subdural electrode all subjects had a 
post-operative anterior-posterior and lateral radiograph. 

Following a standard recovery in the intensive care unit, 
the Subjects were transferred to the epilepsy monitoring unit 
where the testing for this project occurred. After obtaining 
written approval from each Subject, each performed a series 
of actual and imagined movement tasks using the BCI 2000 
Software package. A training session involved 23 runs: seven 
actual or imagined motor tasks repeated three times each 
plus two quiescent periods of eyes open and closed. Each 
run was either 2 or 3 minutes in length separated by a 1 
minute break. A run consisted of a set of 30 repeated trials 
(2–3 seconds in length) of one of the tasks. Subjects were 
instructed to perform the motor and imagined tasks in 
response to visual cues (e.g. a redbox on a computer screen) 
presented by a computer running BCI2000. The tasks were 
performed repetitively during the presence of the visual cue 
and stopped with its disappearance. During a 65 minute 
training session, 32 channels of ECOG data were transferred 
to a microcomputer running BCI 2000 software for signal 
storage as described in E. E. Sulter, J. Microcomput. Appl. 
15, 31-45 (1992). Signals were band-pass filtered between 
0.1 and 220 Hz and sampled at 500 Hz. 
Once the training session was completed, the data was 

analyzed offline to assess for significant spectral changes for 
a given task relative to rest (i.e., inter-trial interval). For the 
joystick task, up versus down, right versus left, and each 
direction versus rest was also analyzed. The time-series 
ECoG data was converted into the frequency domain using 
an autoregressive filter model. The spectra (0–220 Hz) of all 
the electrodes were initially evaluated. Those electrodes 
with significant spectral power differences (r-0.10) for 
each task were identified as potential sources for real-time, 
closed-loop control of a one-dimensional computer cursor. A 
decoding algorithm based on a weighted, linear Summation 
of significant spectral frequency bands in various electrodes 
was generated for testing in the next closed-loop testing 
session with the subject. 
Once significant features of the training session were 

identified offline, the newly identified decoding algorithm 
was coded into the BCI2000 system. (Schalk et al., 2003, 
which is herein incorporated by reference in its entirety). 
The tasks (e.g. moving hand, protruding tongue, imagined 
motor task tasks, speech, and imagined speech) were 
designed such that the resulting processed ECOG signals 
would direct the cursor upwards as the cursor moved at a 
fixed speed from the left side to the right side of a computer 
screen. The rest condition signal was coded such that the 
cursor would be directed downward as the cursor moved 
across the screen. For the closed loop session the Subject is 
instructed to use the specific trained movement or imagined 
task to direct the cursor toward the upper target that appears 
on the right edge of the screen, and to relax to allow the 
cursor to go towards the lower target on the right edge of the 
screen. For a given closed-loop run there were thirty-three 
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trials in which the subject had to direct the cursor towards 
either the upper or lower target. These were followed by a 
minute rest period. The number of runs per session was 
dictated by the subjects willingness to participate. On 
several Subjects, multiple screening and closed-loop ses 
sions were obtained prior to surgical removal of the ECoG 
grids. 

Functional mapping was performed prior to the Subject 
returning to the operating room for removal of the electrode 
arrays and resection of the epileptogenic foci. The Subject 
underwent stimulation mapping to identify the motor 
regions and speech cortex. Mapping involved passing 5-10 
mA of square wave current through paired electrodes to 
induce sensory—motor response or speech arrest. Further 
more, the radiographs were used to identify the stereotactic 
coordinates of each grid electrode and the cortical region 
defined using Talairach's Co-Planar Stereotaxic Atlas of the 
Human Brain. The results of the ECoG spectral analysis 
during the behavioral paradigms, functional electrical stimu 
lus mapping, and stereotactic identification of the electrode 
locations were collated and analyzed. 

During the initial Screening task, the Subjects performed 
seven tasks: open and closing their hands, imagining open 
and closing their hands, tongue protrusion, imagined tongue 
protrusion, saying the word “move', imagining saying the 
word “move', and finally a joystick task where the subjects 
moved a cursor from the center of the computer screen to 
several (four or eight) radially located targets spaced equally 
around the initial center position. FIG. 5 shows the results of 
Subject CC during the imagined “move task, relative to 
rest. As seen in panel 2, imagining saying the word “move” 
produces significantly less power around 20 Hz, than rest 
(r’=0.3, F-36.4, p<0.01). The majority of screening tasks 
(i.e. open and closing hand, protruding tongue, and saying 
the word “move') demonstrated statistically significant 
changes (an r of at least 0.1 or greater) when compared to 
rest in at least one or more electrodes. In addition, the 
majority of imagined correlates also showed a statistically 
significant change. (See FIG. 8). The exceptions included 
the Subject who was cognitively impaired due to slow post 
operative recovery. The optimal of the initial six screening 
tasks for a given Subject was then chosen for Subsequent one 
dimensional, on-line, closed-loop trials. 
Beyond the active versus rest comparison in the first six 

tasks, the final screening task (i.e., joystick task) allowed for 
spectral comparisons amongst different directions of move 
ment (e.g. up VS down, right VS left). Significant differences 
in spectral power across directions allowed for off-line 
prediction of target location in two dimensions. For 
example, in Subject DD, upward movements demonstrated 
a statistically significant increase in power in the frequency 
bands of 51.5-55.5 Hz and 77.5 Hz (r=0.17 and 0.15 
respectively) in electrode 23. With downward movement, on 
the other hand, electrode 16 demonstrated a statistically 
significant 51.5–55.5 Hz power increase (r=0.18). Right 
and left comparisons also showed statistically significant 
differences. When compared against leftward movement, 
directing the cursor rightward demonstrated a significant 
power elevation in the frequency bands of 63.5-65.5 Hz 
(r=0.15) and 85.5-87.5 Hz (r=0.10) in electrode 16 and a 
power elevation of 63.5-65.5 Hz (r=0.25) and 85.5-87.5 
Hz (r=0.15) in electrode 23. 

Using a neural network analysis, the power changes of the 
signals from the electrodes 16 and 23 were then used to 
assign different weights to various frequency bands from the 
two channels to predict the position of the cursor relative to 
the actual cursor position on a Cartesian coordinate system. 
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FIG. 9 shows the results of a neural network analysis 
comparing predicted screen cursor position relative to actual 
cursor position, when four (4) positions were predicted 
using a weighted ECOG signal. It was found that the four (4) 
positions, when predicted by the weighted ECOG signal, 
were distributed in a pattern in which the targets were 
distinct and in the same relative position to the actual targets. 
A Subsequent additional thirteen (13) runs involving eight 
(8) targets was then performed and the same weighting 
system was applied. Again, the individual predicted targets 
closely approximated the actual final target position. 

Example 2 

Real Time Closed-Loop Control Using ECOG 

All four subjects were able to successfully control the 
cursor towards a high percentage of the correct target 
(80–100%) using their ECOG signal in real time and with 
continuous visual feedback. (Appendix, Table 2). The range 
of the percentage of optimal correct choices was between 
80% and 100% using the various trained tasks. These tasks 
included motor tasks (i.e. open and closing the right hand, 
protruding the tongue, and saying the word move) and 
imagined tasks (i.e. imagining open and closing the hand, 
imagined tongue protrusion, and imagining saying the word 
“move'). All subjects were able to achieve control within 
minutes following their initial sixty-five (65) minute training 
session. 
The ECoG frequency bands utilized to achieve control 

were different for different subjects. They encompassed a 
broad range of alpha, beta, and high and low gamma 
frequencies. In general, the controlling frequencies showed 
power Suppression in the alpha and beta frequency ranges 
and power increases in the higher gamma ranges. 

FIG. 10 shows improvement in human subjects’ perfor 
mance on a closed-loop feedback task using the ECoG 
based BCI. Each subjects performance improved during the 
course of their closed loop session. As the session pro 
gressed, there was a trend for increasing percentage of 
correct targets. When an analysis of variance was performed 
following the session, there was a trend in all Subjects to 
show a steady increase in r between the two conditions of 
the cursor moving up and down. The optimal rachieved for 
the various closed loop trial between subjects was between 
0.22 and 0.90. The computer was made to adapt only with 
respect to dynamic range and gain of the signal. Therefore, 
a certain portion of the improvement is attributable to 
changes in cortical activity, as described in more detail in 
Ramoser et al., 1997. 
A novel BCI and related methods are based on the 

Surprising results set forth in the Examples which demon 
strate real time, on-line control of a cursor in one dimension 
using electrocorticographic signal. Closed loop trials were 
accomplished with minimal training, achieved control 
within minutes, and utilized novel tasks and novel frequency 
bands to achieve control. A high level of control (80–100%) 
was performed irrespective of the subjects functional status 
and enabled use of a broad range of frequencies ranging 
from as low as 11.5 Hz to as high as 53.5 Hz. Additionally, 
each Subject, during his or her closed loop session, demon 
strated trends towards improved correct target choice with 
repetition of runs. Further analysis of this increase in per 
formance confirmed that this was a reflection of cortical 
adaptation to adjust the ECoG signal between the two 
conditions of up and down. Moreover, this adaptation 
occurred very rapidly on the order of minutes, which places 
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ECoG signal tuning time in the same range as that of single 
unit systems rather than the weeks to months required for 
EEG based systems. 
The overt control achieved by the various subjects is 

notable in that both standard tasks (actual and imagined 
motor activity) and novel tasks (actual and imagined speech) 
were used. Concomitantly, the cortex activated in these 
closed loop sessions involved regions of sensorimotor cortex 
as expected, but also involved areas such as the premotor 
cortex and Broca's area. Subjects AA and BB had a fair 
degree of concordance in their hand related tasks. While AA 
performed the actual motor task of hand opening and 
closing, BB performed the imagined version. The electrodes 
of both AA and BBs were positioned in Brodman’s areas 2 
and 3. Subjects CC and DD both used speech to control the 
cursor position (Subject DD utilized both actual and imag 
ined speech, and Subject CC used imagined speech only). 
Both subjects CC and DD required the use of two electrodes 
for closed loop control. Each subject CC and DD had an 
electrode that was found to be in Brodman's areas 44/45, or 
Broca's area. While performing tongue protrusion alone, 
Subject DD involved a single electrode in area 44, but not 
in 6 as found with the speech paradigm. That the brain 
signals underlying these novel tasks were distributed over a 
limited region of cortical space, involving various areas of 
functional cortex, shows both the improved spatial and 
signal resolution of ECOG signal and Supports multiple 
degrees of freedom of control within a limited cortical 
region. 

Multiple degrees of freedom of user control is a goal of 
any BCI. Discussions of degrees of freedom of user control 
with respect to user brain signals other than ECOG are 
provided in, for example, Fetz and Finocchio (1971) (first 
demonstrated one degree of control obtained from operant 
training of a monkey to alter the firing rate of a single 
neuron); Wolpaw et al., (1991)(using EEG signal from scalp 
electrodes in humans); Kennedy and Bakay, (1998) (utiliz 
ing glass cone electrodes in a human ALS patient); Wessberg 
et al. (2000)(using multiple microelectrode arrays in mon 
keys); Serruya et al. (2002) (achieving two degrees of 
freedom of control in monkeys using microelectrode arrays); 
Taylor et al., (2002) (achieving three dimensional, currently 
the highest level of control, using microelectrode arrays in 
primates). 
To assess the degree of information that may lie nascent 

in the ECoG signal for describing position in space, an 
analysis was performed offline with the data acquired from 
the four and eight target joystick tasks of Subject ES. Using 
the ECoG data acquired from two electrodes that showed 
significant changes during joystick manipulation, the power 
changes were analyzed using a neural network analysis. The 
frequency bands were within the high gamma range and 
changes associated with movement were associated with 
power increases. For both four and eight target trials the 
analysis showed significant correlation to the actual final 
target positions. The relationship between predicted and 
actual targets is shown in FIG. 9. Though performed offline, 
this analysis Supports the idea that directional ECoG signal 
Supplies the information necessary for two dimensional 
control. 

Example 3 

Achieving Two-Dimensional Online control 

In addition to mapping out two dimensional information 
as a method for achieving two-dimensional (2D) control, 
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another method involves the use of two independently 
controlled signals in parallel. This was achieved in one 
Subject in which analysis demonstrated the ability to sepa 
rate out the signal information for individual finger move 
ments. In this particular example, signal differences were 
observed between the middle finger and the thumb. Specifi 
cally, the middle finger produced frequency power changes 
in channels 12, 16, 17 and 25. These frequencies were 
predominantly between 70 and 160 HZ. In contrast, the 
thumb produced significant frequency changes predomi 
nantly in channels 17 and 18, with frequency band changes 
in the 60–170 Hz and 100–110 HZ ranges respectively. (FIG. 
11). By taking the channels and frequency bands that were 
distinct to each finger, namely channel 12 at 80–160 Hz for 
the middle finger, and channel 18 at 100–110 Hz for the 
thumb respectively, the subject could then differentially 
control movement in different directions by moving either 
the middle finger or the thumb. Thus, each finger was able 
to control a given direction. When held immobile and 
pointing to the left (inactive condition), the left thumb 
directed the cursor to the left. When actively pointed to the 
right (active condition), the left thumb directed the cursor to 
go left. The left middle finger held immobile and pointing up 
(inactive condition) directed the cursor upwards, and the left 
middle finger actively pointing downwards (active condi 
tion) directed the cursor to go downwards. 

After a brief training session the subject was able to 
achieve a high level of two-dimensional control with an 
optimal target accuracy of 88% and 94% for two separate 
sessions. Additionally, two-dimensional control was 
achieved using motor imagery alone. The Subject was asked 
to imagining various parts of his left arm. These included the 
fingers, the hand, and the arm at the shoulder. Analysis was 
once again performed in which the active imagined condi 
tions were compared against rest. The most notable active 
conditions, and also the most independent, were the imag 
ined shoulder movement and imagined middle finger move 
ment. For the imagined shoulder task significant increases in 
power were noted between 80 and 110 Hz in channel 28, 
while the imagined finger task produced significant power 
decreases in the 20–30 HZ range in channel 18. These tasks 
were then coded into the BCI computer such that the active 
imagined condition of imagining shoulder movement moved 
the cursor to the right (with an increase in power in channel 
28 at 80–110 Hz). Imagining the shoulder held still moved 
the cursor left (decrease in power in channel 28 at 80–110 
HZ). To move the cursor down, the patient imagined moving 
the finger (decrease in power in channel 18 at 30 Hz), and 
to move the cursor up the patient imagined the finger being 
held erect (increase in power in channel 18 at 30 Hz). The 
patient performed two sessions using these imagined task 
and was able to achieve control with optimal target accuracy 
of 70% and 82%. 
The ability to separate individual finger movements and 

limb movements has not previously been achieved utilizing 
EEG or other BCI technology In addition, the use of 
individual finger movement and limb movement to achieve 
two dimensional control has not previously been shown. In 
particular, the signal frequencies involved in the present 
invention are well outside the technical limitations of EEG 
based techniques. Thus, the inventors have successfully 
demonstrated the novel use of ECoG in a BCI system to 
discriminate various individual finger movements and limb 
movements, which is especially useful as a basis for pro 
viding multiple dimensions of external device control. 

Further, the regional discrimination by ECoG acquisition 
is finer than what is achievable using EEG (millimeters for 
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ECoG versus centimeters for EEG). With the combination of 
higher spatial resolution, better signal to noise ratios, 
broader frequency range sensitivity, and lower clinical risk 
(relative to single unit systems), ECoG signal is especially 
well-suited to BCI applications. The results set forth in the 
Examples are the first demonstration of use of this signal for 
closed-loop control. That the demonstrated results were 
achieved within minutes of initiation of online trials follow 
ing minimal training, combined with evidence that the signal 
provides information on two dimensional space, and that 
two dimensional online control was achieved utilizing pre 
viously undiscovered differences in ECoG signal between 
individual fingers, advances ECOG as a novel BCI platform 
for human applications. 

OTHER EMBODIMENTS 

The cognitive basis of human speech and language is an 
important and continuing area of neuroscience research. The 
known radiographic and electrophysiologic techniques 
described Supra have been applied to the studying the neural 
bases of human language, and the results have Subsequently 
challenged some of the classical interpretation of the Wer 
nicke-Lichtheim model of speech in which there is a center 
for language production (Broca's area) and center for con 
ceptual understanding (Wernicke's area). Petersen et al. 
(1988), first utilized PET to assess various elements of 
language processing at the single word level from passive 
word viewing, to noun reading/repetition, to verb generation 
tasks. The results were somewhat surprising in that noun 
reading/repetition did not activate Wernicke's or Broca's 
area to any extent, and the tasks involved with more com 
plex language processing (verb generation) were most asso 
ciated with activation in the left inferior frontal cortex or 
Broca's area. Previously this region had conventionally been 
associated with the motor programming of speech but not 
with higher semantic processing. Conflicting with this view, 
Wise et al. (1991) found semantic processing in both Broca's 
and Wernicke's locations. Further, other groups using PET 
and fMRI later reported findings similar to those previously 
reported by Petersen et al. (1988), showing activation of 
Broca's region by various overt and covert speech tasks. 

Various electrophysiological paradigms have also been 
used to investigate the role of inferior frontal lobe and 
rolandic cortex with semantic processing. Crone et al. 
(1994) found 8–13 Hz suppressions associated with picture 
naming in the posterior frontal lobe. Additionally, Crone et 
al., (2001), found increased gamma band activity for three 
different spoken and hand signed language tasks in the same 
region over the left inferior frontal gyrus. Ihara et al., (2003), 
utilized MEG ERPs and found that syntactic word process 
ing of words was centered in the inferior frontal Sulcus and 
the precentral sulcus. Collectively the results of these studies 
Suggest that the classically understood Broca's region may 
perform cognitive functions beyond simple motor program 
ming of speech. 
To demonstrate aspects of the BCI of the present inven 

tion, the examples described herein were directed toward 
characterizing differences in the electrophysiology between 
linguistic and non-linguistic articulation in Broca's area. 
Electrocorticographic signal was acquired from three Sub 
jects with intractable epilepsy who required the placement of 
subdural electrode arrays over the fronto-temporal-parietal 
region. To examine both the motor and semantic properties 
of language in Broca's region, the paradigm that was 
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employed involved comparing ECoG signals generated dur 
ing oral motor tasks, repetitive speech tasks, and verb 
generation tasks. 

Acquisition of ECoG signals in a real-time, time locked 
fashion using the BCI device allows one to investigate 
human and non-human cortical activity, but is especially 
useful for human applications. Previously, examining ECOG 
signals in humans was an extremely difficult process 
because, while data could be acquired from data storage, it 
was impossible to synchronize or “tag” the recorded data in 
time with a given behavioral/motor/cognitive paradigm. In 
other words, it was very difficult to know exactly when the 
individual may have been gotten a cue to do something. Such 
as saying a word, moving their hand, or doing some other 
task. Also it was difficult to know, not only when they got the 
cue, but when they actually responded to a given cue. Since 
ECoG changes occur on the order of milliseconds, the lack 
of precise time synchronization between cues, responses, 
and ECoG recording previously made it very difficult to 
extract information about how changes in ECOG activity 
correlate with behavior, motor activity, cognition, etc. 

In contrast, the BCI system of the present invention 
provides a relatively easy means for extracting information 
from ECoG activity that correlates with behavior, motor 
activity, and cognition. The recording of ECoG is done in 
real time, and the cues for various tasks and behavioral 
responses are all coordinated within a single system that is 
running BCI software (BCI2000) that is customized to tag 
all the data relating to cues and other aspects of the behav 
ioral state. Accordingly, all the data can be parsed for future 
analysis, which allows for very detailed investigation that 
was previously very difficult. The system and methods 
permit one to know exactly what changes in the ECoG signal 
occurred before, during, and after a given event, regardless 
of whether that event is a cue to act, an image presented for 
cognitive response, or an overt or covert behavioral response 
of Some sort (verbal, motor, cognitive, emotional). 

In applying this to the experimental paradigm used to 
demonstrate the BCI of the present invention, in which 
various types of speech tasks ranging from simple motor, to 
repetitive, to more complex, were performed, various cog 
nitive functions were differentiated both in terms of ana 
tomic location, but also in regard to frequency band. 

FIG. 12 provides an example of one of three subjects 
topograms of regional frequency changes at 18 Hz (left 
column) and 40 Hz (right column) with a given task Such as 
tongue protrusion (top row), repetitive speech (middle row), 
and verb generation (bottom row). The white line represents 
the central Sulcus and the gray line outlines Broca's area. 
The first two rows show regions of frequency change around 
the central Sulcus, namely sensorimotor cortex. The higher 
linguistic function, or verb generation, however, demon 
strates distinctly different regions of frequency power 
change located in the inferior frontal region. Moreover, this 
change in regional frequency power change occurs primarily 
at 18 Hz and not in other frequencies (such as 40 Hz, the 
right column). These findings suggest that inferior frontal 
cortex are involved with higher cognitive function and that 
this information may somehow be conveyed at frequency 
power changes at around 18 HZ. 

These results show that the BCI of the present invention 
not only deciphers intent for generating an overt device 
command, but also deciphers the meaning of ECoG signal as 
it relates to various brain activities. 

Furthermore, the real time capacity of the BCI system 
allows for a truly novel method of assessing cortical func 
tion from a fundamentally causal perspective. All previously 
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available methods (fMRI, PET, EEG) look at phenomena 
Such as blood flow changes and frequency power changes in 
association with a given cognitive activity. Associations 
between a given cognitive activity and some type of statis 
tically significant change in signal provide the bases for 
conclusions that the change in signal indicates involvement 
in the given cognitive activity. In contrast, in a system in 
which a real time brain signal (i.e. ECoG) is utilized for 
overt control of a device, the signal is definitively involved 
with a given cognitive process in order to achieve device 
control. In other words, once real time control is achieved 
using a defined signal with a defined cognitive process, the 
signal is demonstrably causal to control of the device and 
therefore is definitively involved with the given cognitive 
activity utilized for device control. Thus, in contrast to 
previously known techniques and approaches, the BCI and 
related methods of the present invention provide new tools 
for delineating brain function. 
The detailed description set-forth above is provided to aid 

those skilled in the art in practicing the present invention. 
However, the invention described and claimed herein is not 
to be limited in scope by the specific embodiments herein 
disclosed because these embodiments are intended as illus 
tration of several aspects of the invention. Any equivalent 
embodiments are intended to be within the scope of this 
invention. Indeed, various modifications of the invention in 
addition to those shown and described herein will become 
apparent to those skilled in the art from the foregoing 
description which do not depart from the spirit or scope of 
the present inventive discovery. Such modifications are also 
intended to fall within the scope of the appended claims. 

REFERENCES CITED 

All publications, patents, patent applications and other 
references cited in this application are incorporated herein 
by reference in their entirety for all purposes to the same 
extent as if each individual publication, patent, patent appli 
cation or other reference was specifically and individually 
indicated to be incorporated by reference in its entirety for 
all purposes. Citation of a reference herein shall not be 
construed as an admission that Such is prior art to the present 
invention. 

REFERENCES 

Wolpaw, J. R., Birbaumer, N., McFarland, D. J., 
Pfurtscheller, G., Vaughan, T. M. Brain-computer interfaces 
for communication and control. Clin Neurophysiol. 113, 
767 791 (2002) 

Vidal, J. J. Real time detection of brain events in EEG. 
IEEE Proc. 65, 663–664 (1977). 

Sutter E. E. The brain response interface: communication 
through visually induced electrical brain responses. J Micro 
comput Appl. 15, 31-45 (1992). 

Elbert T. Rockstroh B., Lutzenberger W., Birbaumer N. 
Biofeedback of slow cortical potentials. I. Electroencepha 
logr. Clin Neurophysiol. 48, 293–301 (1980) 

Farwell L. A., Donchin E. Talking off the top of your 
head: toward a mental prosthesis utilizing event-related 
brain potentials. Electroencephalogr. Clin Neurophysiol. 70, 
510 23 (1988). 
Wolpaw J. R. McFarland D. J., Neat G. W., Forneris C. 

A. An EEG-based brain-computer interface for cursor con 
trol. Electroencephalogr. Clin Neurophysiol. 78, 252-9 
(1991). 



US 7,120,486 B2 
19 

Pfurtscheller G., Flotzinger D., Kalcher J. Brain Com 
puter Interface—a new communication device for handi 
capped persons. J Microcomput Appl. 16, 293–299 (1993). 

Georgopoulos A. P. Schwartz A. B., Kettner R. E. Neu 
ronal population coding of movement direction. Science. 
233, 1416–9 (1986). 

Laubach M., Wessberg J., Nicolelis M. A. Cortical 
ensemble activity increasingly predicts behaviour outcomes 
during learning of a motor task. Nature. 405, 567–71 (2000). 

Taylor D. M., Tillery S.I., Schwartz A. B. Direct cortical 
control of 3D neuroprosthetic devices. Science. 296, 
1829-32 (2002) 
Kennedy P. R. Bakay R. A. Restoration of neural output 

from a paralyzed patient by a direct brain connection. 
Neuroreport. 9, 707–11 (1998). 

Boulton A. A., Baker G. B., Vanderwolf C. H., eds. 
Neurophysiological Techniques. Applications to Neural Sys 
tems. Humana Press, Totowa, 1–58 (1990). 

Freeman W. J., Holmes M. D., Burke B.C., Vanhatalo S., 
Spatial spectra of scalp EEG and EMG from awake humans. 
Clin Neurophysiol 114, 1053-1068 (2003). 

Srinivasan R, Nunez PL, Silberstein R B. Spatial filtering 
and neocortical dynamics: estimates of EEG coherence. 
IEEE Trans Biomed Eng. 45,814–26 (1998). 
Wolpaw J. R. McFarland D. J., Vaughan T. M. Brain 

computer interface research at the Wadsworth Center. IEEE 
Trans Rehabil Eng. 8, 222-6 (2000). 

Pfurtscheller G., Neuper C. Guger C., Harkam W., 
Ramoser H. Schlogl A., Obermaier B. Pregenzer M., 
Current trends in Graz Brain-Computer Interface (BCI) 
research. IEEE Trans Rehabil Eng. 8, 216–9 (2000). 

Kostov A., Polak M. Parallel man-machine training in 
development of EEG-based cursor control. IEEE Trans 
Rehabil Eng. 8, 203–5 (2000). 

Lopes da Silva F. Neural mechanisms underlying brain 
waves: from neural membranes to networks. Electroen 
cephalogr. Clin Neurophysiol. 79, 81–93 (1991). 

Pfurtscheller G. Lopes da Silva F. H. Event-related 
EEG/MEG synchronization and desynchronization: basic 
principles. Clin Neurophysiol. 110, 1842–57 (1999). 

McFarland D. J., Miner L. A., Vaughan T. M., Wolpaw J. 
R. Mu and beta rhythm topographies during motor imagery 
and actual movements. Brain Topogr: 12, 177–86 (2000). 

Crone N. E., Miglioretti D. L., Gordon B., Sieracki J. M., 
Wilson M. T., Uematsu S. Lesser R. P. Functional mapping 
of human sensorimotor cortex with electrocorticographic 
spectral analysis. I. Alpha and beta event-related desynchro 
nization. Brain. 121, 2271-99 (1998). 

Pfurtscheller G., Graimann B. Huggins J. E., Levine S. P. 
Schuh L. A. Spatiotemporal patterns of beta desynchroni 
Zation and gamma Synchronization in corticographic data 
during self-paced movement. Clin Neurophysiol. 114, 
226–36 (2003). 

Crone N. E., Miglioretti D. L., Gordon B. Lesser R. P. 
Functional mapping of human sensorimotor cortex with 
electrocorticographic spectral analysis. II. Event-related 
synchronization in the gamma band. Brain. 121, 2301-15 
(1998). 
Aoki F., Fetz E. E., Shupe L. Leftich E., Ojemann G. A. 

Increased gamma-range activity in human sensorimotor 
cortex during performance of visuomotor tasks. Clin Neu 
rophysiol. 110, 524–37 (1999). 

Levine S P Huggins J. E. BeMent S L. Kushwaha R K, 
Schuh LA, Passaro E A, Rohde MM, Ross D A. Identifi 
cation of electrocorticogram patterns as the basis for a direct 
brain interface. J Clin Neurophysiol. 6, 439–47 (1999). 

5 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

20 
Huggins J E, et. al. Detection of event-related potentials 

for development of a direct brain interface. J Clin Neuro 
physiol. 16, 448–55 (1999). 

Levine S. P., et al. A direct brain interface based on 
event-related potentials. IEEE Trans Rehabil Eng. 8, 1805 
(2000). 
Rohde M. M., et al. Quality estimation of subdurally 

recorded, event-related potentials based on signal-to-noise 
ratio. IEEE Trans Biomed Eng. 49, 31-40 (2002). 

Schalk G. McFarland D. J., Hinterberger T., Birbaumer, 
N., Wolpaw J. R. BCI2000: A general purpose brain com 
puter interface (BCI) system for research and development. 
IEEE Trans Biomed Eng 10, 1-10 (2003) 

Schalk G. McFarland D. J., Hinterberger T., Birbaumer, 
N., Wolpaw J. R. BCI2000: A general purpose brain com 
puter interface (BCI) system for research and development. 
IEEE Trans Biomed Eng 10, 1-10 (2003) 

Schalk G. McFarland D. J., Hinterberger T., Birbaumer, 
N., Wolpaw J. R. BCI2000: A general purpose brain com 
puter interface (BCI) system for research and development. 
IEEE Trans Biomed Eng 10, 1-10 (2003) 
Fox P. T., Perlmutter J. S., Raichle M. E., Astereotactic 

method of anatomical localization for positron emission 
tomography. J Comput Assist Tomogr: 9, 141–53 (1985). 
Ramoser H. Wolpaw J. R., Pfurtscheller G. EEG-based 

communication: evaluation of alternative signal prediction 
methods, Biomedizinische Technik. 42, 226–33 (1997). 
Wolpaw J. R. McFarland D. J., Neat G. W., Forneris C. 

A. An EEG-based brain-computer interface for cursor con 
trol. Electroencephalogr. Clin Neurophysiol. 78, 252-9 
(1991). 
Wolpaw J. R., Mcfarland D. J., Vaughan T. M., Brain 

computer interface research at the Wadsworth Center. IEEE 
Trans Rehabil Eng. 8, 222-225 (2000) 

Fetz E. E., Finocchio D. V., Operant conditioning of 
specific patterns of neural and muscular activity. Science. 
174,431–5 (1971). 
Neuper C., Muller G. R., Kubler A., Birbaumer N., 

Pfurtscheller G., Clinical application of an EEG-based 
brain-computer interface: a case study in a patient with 
severe motor impairment. Clin Neurophysiol. 114, 399-409 
(2003). 
Wolpaw J. R., Flotzinger D., Pfurtscheller G. McFarland 

D. J., Timing of EEG-based cursor control. J. Clin Neuro 
physiol. 14, 529–38 (1997). 

Penny W. D., Roberts S. J., Curran E. A., Stokes M. J., 
EEG-based communication: pattern recognition approach. 
IEEE Trans Rehabil Eng. 8, 214–5 (2000). 

Kubler A. Kotchoubey B., Hinterberger T., Ghanayim N., 
Perelmouter J., Schauer M., Fritsch C., Taub E., Birbaumer 
N. The thought translation device: a neurophysiological 
approach to communicationin total motor paralysis. Exp 
Brain Res. 124, 223-32 (1999). 
Neuper C. Schlogl A., Pfurtscheller G. Enhancement of 

left-right sensorimotor EEG differences during feedback 
regulated motor imagery. J Clin Neurophysiol. 16, 373-82 
(1999). 
Wessberg J. Stambaugh C. R. Kralik J. D., Beck P. D., 

Laubach M. Chapin J. K. Kim J., Biggs S.J., Srinivasan M. 
A., Nicolelis M. A., Real-time prediction of hand trajectory 
by ensembles of cortical neurons in primates. Nature. 408, 
361–5 (2000). 
Wolpaw J. R. McFarland D.J., Multichannel EEG-based 

brain-computer communication. Electroencephalogr. Clin 
Neurophysiol. 90, 4449 (1994). 



US 7,120,486 B2 
21 

Serruya M. D., Hatsopoulos N. G., Paninski L., Fellows 
M. R., Donoghue J. P. Instant neural control of a movement 
signal. Nature. 416, 141–2 (2002). 

Taylor D. M., Tillery S.I., Schwartz A. B., Direct cortical 
control of 3D neuroprosthetic devices. Science. 296, 
1829-32 (2002). 

Grabowski, T. J., Damasio, A. R. (2000). Investigating 
Language with Functional Neuorimaging. In Brain Mapping 
The Systems, A. W. Toga and J. C. Mazziotta, eds. (San 
Diego Calif.: Academic Press), pp. 425-458. 

Villringer, A., and Dirnagl, U. (1995). Coupling of brain 
activity and cerebral blood flow: basis of functional neu 
roimaging. Cerebrovasc Brain Metab Rev 7, 240 76. 

Jueptner, M., Weiller, C. (1995) Review: does measure 
ment of regional cerebral blood flow reflect synaptic activ 
ity? Implications for PET and fMRI. Neuroimage 2, 148–56. 

Turner, R. Howseman, A., Rees, G. E., Josephs, O. 
Friston, K. (1998) Functional magnetic resonance imaging 
of the human brain: data acquisition and analysis. Exp Brain 
Res 123, 5–12. 

Di Salle, F., Formisano, E., Linden, D. E., Goebel, R., 
Bonavita, S. Pepino, A. Smaltino, F., Tedeschi, G. (1999) 
Exploring brain function with magnetic resonance imaging. 
Eur J Radiol 30, 84-94. 

Mathiesen, C., Caesar, K., Akgoren, N., Lauritzen, M. 
(1998) Modification of activity-dependent increases of cere 
bral blood flow by excitatory synaptic activity and spikes in 
rat cerebellar cortex. J. Physiol 15, 555-66. 

Peyron, R., Le Bars, D., Cinotti, L., Garcia-Larrea, L., 
Galy, G., Landais, P., Millet, P., Lavenne, F. Froment, J. C., 
Krogsgaard-Larsen, P. et al. (1994) Effects of GABA-A 
receptors activation on brain glucose metabolism in normal 
subjects and temporal lobe epilepsy (TLE) patients. A 
positron emission tomography (PET) study. Part I: Brain 
glucose metabolism is increased after GABA-A receptors 
activation. Epilepsy Res 19, 45–54. 

Peyron, R., Cinotti, L., Le Bars, D., Garcia-Larrea, L., 
Galy, G., Landais, P., Millet, P., Lavenne, F. Froment, J. C., 
Krogsgaard-Larsen, P. et al. (1994) Effects of GABA-A 
receptors activation on brain glucose metabolism in normal 
subjects and temporal lobe epilepsy (TLE) patients. A 
positron emission tomography (PET) study. Part II: The 
focal hypometabolism is reactive to GABAA agonist admin 
istration in TLE. Epilepsy Res 19, 55–62. 

Roland, P. E., Friberg, L. (1988) The effect of the 
GABA-A agonist THIP on regional cortical blood flow in 
humans. A new test of hemispheric dominance. J Cereb 
Blood Flow Metab 8, 314–23. 

Tagamets, M. A., Horwitz, B., (2001) Interpreting PET 
and fMRI measures of functional neural activity: the effects 
of synaptic inhibition on cortical activation in human imag 
ing studies. Brain Res Bull 54, 267 73. 

Petersen, S. E., Fox, P. T., Posner, M. I., Mintun, M., 
Raichle, M. E. (1988) Positron emission tomographic stud 
ies of the cortical anatomy of single-word processing. 
Nature 331, 585-9. 

Raichle, M. E. (1996) What words are telling us about the 
brain. Cold Spring Harb Symp Quant Biol 61, 9–14. 

Pfurtscheller, G. (1977) Graphical display and statistical 
evaluation of event-related desynchronization (ERD). Elec 
troencephalogr. Clin Neurophysiol 43, 757–60. 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

22 
Pfurtscheller, G., Berghold, A. (1989) Patterns of cortical 

activation during planning of Voluntary movement. Electro 
encephalogr. Clin Neurophysiol 72, 250-8. 

Pfurtscheller G. Graimann B. Huggins J. E., Levine S. P. 
Schuh L. A. Spatiotemporal patterns of beta desynchroni 
Zation and gamma Synchronization in corticographic data 
during self-paced movement. Clin Neurophysiol. 114, 
226–36 (2003). 

Pfurtscheller, G. (1992) Event-related synchronization 
(ERS): an electrophysiological correlate of cortical areas at 
rest. Electroencephalogr. Clin Neurophysiol 83, 62–9. 

Singer, W. (1993) Synchronization of cortical activity and 
its putative role in information processing and learning. 
Annu Rev Physiol 55, 349–74. 

Crone, N. E., Boatman, D., Gordon, B., Hao, L. (2001) 
Induced electrocorticographic gamma activity during audi 
tory perception. Brazier Award-winning article, 2001. Clin 
Neurophysiol 112, 565–82. 

Pfurtscheller G. Cooper R. (1975) Frequency dependence 
of the transmission of the EEG from cortex to scalp. 
Electroencephalogr. Clin Neurophysiol 38, 93–6. 

Roberts, T. P., Poeppel, D., Rowley, H. A. (1998) Mag 
netoencephalography and magnetic source imaging. Neu 
ropsychiatry Neuropsychol Behav Neurol 11, 49-64. 

Freeman W. J., Holmes M. D., Burke B.C., Vanhatalo S., 
Spatial spectra of scalp EEG and EMG from awake humans. 
Clin Neurophysiol 114, 1053-1068 (2003). 

Bookheimer, S.Y., Zefliro, T.A., Blaxton, T.A., Gaillard, 
P. W., Theodore, W. H., (2000) Activation of language cortex 
with automatic speech tasks. Neurology 55, 1151–7. 

Friedman, L., Kenny, J. T., Wise, A. L. Wu, D., Stuve, T. 
A., Miller, D. A., Jesberger, J. A., Lewin, J. S. (1998) Brain 
activation during silent word generation evaluated with 
functional MRI. Brain Lang, 64, 231-56. 

Palmer, E. D. Rosen, H. J., Ojemann, J. G., Buckner, R. 
L., Kelley, W. M., Petersen, S. E. (2001) An event-related 
fMRI study of overt and covert word stem completion. 
Neuroimage 14, 182–93. 

Yetkin, F. Z., Hammeke, T.A., Swanson, S.J., Morris, G. 
L., Mueller, W. M., McAuliffe, T. L., Haughton, V. M. 
(1995) A comparison of functional MR activation patterns 
during silent and audible language tasks. AJNR Am J 
Neuroradiol 16, 1087-92. 

Binder J. R. (1997) Neuroanatomy of language processing 
studied with functional MRI. Clin Neurosci, 4, 87–94. 
Crone N. E., Hart. J., Boatman D., Lesser, R. P., Gordon, 

B. (1994) Regional cortical activation during language and 
related tasks identified by direct cortical electrical recording. 
Brain Lang 47. 466-468. 

Crone, N. E., Hao, L., Hart, J., Boatman, D., Lesser, R. P., 
Irizarry, R., Gordon, B. (2001) Electrocorticographic 
gamma activity during word production in spoken and sign 
language. Neurology 57, 2045–53. 

Ihara, A., Hirata, M., Sakihara, K., Izumi, H., Takahashi, 
Y., Kono, K., Imaoka, H., Osaki.Y., Kato, A., Yoshimine, T., 
Yorifuji, S. (2003) Gamma-band desynchronization in lan 
guage areas reflects syntactic process of words. Neurosci 
Lett 339, 135-8. 



US 7,120,486 B2 

TABLE 1. 

Table 1. Patient Profiles 

Subject Age Sex Seizure etiology & type Grid Placement Electrode # Seizure Focus 

AA 28 M Idiopathic GTC Left FTP 64 Left posterior temporal lobe 
BB 23 M Idiopathic CP Left FTP 64 Left middle temporal lobe 
CC 35 F Idiopathic CP Left FTP 38 Left inferior and mesial temporal 

lobe 
DD 33 M Idiopathic CP&GTC Left Inferior FP 64 Left middle and posterior temporal 

and lobe 
temporal 

Abbreviations: M, male: F, female, GTC, general tonic clonic; CP, complex partial; FTP, frontal-temporal-parietal; FP, 
frontal-parietal. 

TABLE 2 

Table 3. Signal features of closed loop sessions 

Electrodes Frequency Brodman's Optimal 
Subject Cognitive Capacity Action involved Frequency Bands Change Areas: Performance** 

AA Severely impaired Open and closing 2, 3 (2) Decrease 2, 3 80% 
right hand 115-17.5 Hz 

49.5-53.5 Hz Ce3St. 

(3) Ce3St. 
31.5-33.5 Hz 
49.5-S1.5 Hz Ce3St. 

BB High Functioning Imagine open and 15 31.5 Hz Decrease 3 83% 
closing right hand 

CC High Functioning Imagine saying move 3, 11 21.5 Hz Decrease 9, 44 97% 
DD Mildly impaired Say Move & imagine 15, 29 13.5 Hz Decrease 6, 45 96% & 97% 

saying move 27.5 HZ Decrease 
35.5 Hz Decrease 

Tongue Protrusion & 29 13.5 Hz Decrease 45 100% x 8.8% 
Imagined Tongue 
protrusion 

**Calculated using skull radiographs and a Talairach atlasi 
***Maximal percentage of correct of two targets chosen 
DTalairach, J., Tournoux P. Co-Planar Stereotaxic Atlas of the Human Brain. Thieme Medical Publischers, Inc., New York (1998). 

What is claimed is: 

1. A brain computer interface (BCI) comprising: 
an electrocorticography (ECoG) electrode array adapted 

to be implanted beneath the scalp of a user and con 
figured for acquiring electrocorticography (ECoG) sig 
nals of the subject; 

an acquisition computer coupled to the electrode array for 
collecting and storing the ECoG signals; and, 

coupled to the acquisition computer, a BCI computer 
having software configured to analyze the ECoG sig 
nals to determine an intent of the user. 

2. A BCI according to claim 1 further comprising an 
output device communicatively coupled to the BCI com 
puter, the BCI computer further configured to generate a 
device command from the intent of the user. 

3. A BCI according to claim 1 wherein said electrode 
array provides signals of mu, beta and gamma rhythms of 
the user. 

4. A BCI according to claim 1 wherein said electrode 
array provides signals having a significant frequency content 
(power) of greater than about 40 Hz. 

5. Abrain computer interface BCI comprising acquisition 
hardware for acquiring an ECoG signal communicatively 
coupled to a BCI computer configured to analyze the ECoG 
signal to determine an intent of a user. 

6. A BCI according to claim 5 further comprising an 
output device communicatively coupled to the BCI com 
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puter, the BCI computer further configured to generate a 
device command from the intent of the user, to control the 
output device. 

7. A method for providing control of an output device by 
a user comprising: 

collecting ECOG signals of the user's brain activity using 
an electrocorticography (ECOG) based brain computer 
interface (BCI); and 

computer processing the ECoG signals to determine an 
intent of the user with respect to the output device. 

8. A method according to claim 7 comprising: 
generating from the intent of the user a device command 

to the output device; 
communicating the device command to the output device. 
9. A method according to claim 8 further comprising: 
monitoring a position of the output device; and 
providing feedback to the user on the position of the 

output device with respect to a target position. 
10. A method according to claim 8 wherein monitoring the 

brain activity of the user comprises monitoring mu, beta and 
gamma rhythms of the user. 

11. A method according to claim 8 wherein collecting 
ECoG signals of user's brain activity comprises collecting 
ECoG signals having a significant frequency content 
(power) of more than about 40 Hz. 

12. A method of controlling movement of a cursor on a 
computer monitor in real time comprising: 

monitoring electrocorticography (ECoG) signals of the 
brain activity of a subject; 
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analyzing the ECoG signals to determine the intent of the communicating the intended correction by the user to the 
user with respect to the cursor movement; computer monitor to modify movement of the cursor. 

comparing the intent of the user to a current position of 13. The method in accordance with claim 12, wherein 
the cursor, 

generating from the intent of the user a device command 5 
to the computer monitor to move the cursor, 

providing feedback to the user on the current position of 
the cursor, 

reanalyzing the ECoG signal to determine an intended 
correction by the user with respect to the cursor move- 10 
ment; k . . . . 

analyzing the ECoG signal comprises analyzing the ECoG 
to determine the intent of the user with respect to the cursor 
movement in at least two dimensions, and communicating 
the intent of the user to the display to move the cursor 
comprises moving the cursor in at least two dimensions. 
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