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provide new Hadamard vectors when these are needed for 
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METHOD AND APPARATUS FOR 
ASSOCATIVE MEMORY 

This invention was made with Government Support pro 
vided by the Defense Advanced Research Projects Agency, 
ARPA Order 6429, through Contract DAAHO1-88-C-0887, 
issued by the U.S. Army Missile Command. The Govern 
ment has certain rights in the invention. 

BACKGROUND OF THE INVENTION 

The invention pertains to electronic artificial neural 
networks, in which many simple electronic units are heavily 
interconnected Such that they are capable of massively 
parallel computation. AS is customary in the discussion of 
artificial neural networks, functional parts are given names 
Suggested by neurobiology, and the adjective "artificial” is 
Suppressed; hence we will Speak here simply of “neurons', 
“synapses”, and “dendrites”. 

With this understanding, a neural net may be described as 
a collection of functional units, called neurons, which are 
interconnected Viajunctions, called Synapses, and input lines 
called dendrites. Each dendrite collects Synaptic outputs into 
a Sum, called activation, which is presented to a neuron for 
processing according to an output function, thereby produc 
ing a signal. In electronic neural nets, the Signals are usually 
Voltages, the activations are electric currents, and the neu 
rons are operational amplifiers which have an activation 
current as input, and a signal Voltage as output. The output 
function is usually of Sigmoidal type, Such as the hyperbolic 
tangent. The dendrite of the neuron is a conductor that 
collects the output currents of certain Synapses. The Synaptic 
inputs are signals from certain neurons. 

Neural networks can be Structured in Such a manner that 
the net functions as an associative memory, i.e., a device that 
is capable of associative recall, in which an input vector X 
produces as output the Stored vector that is closest to X. 
Undesirable consequences of correlations between Stored 
vectors can be eliminated by encoding the Stored vectors as 
orthogonal bipolar vectors, i.e., orthogonal vectors with 
components 1 and -1. Such vectors are called Hadamard 
vectors. Encoding the Stored vectors q, C=1 to L, as 
Hadamard Vectors means that to every Stored vector q is 
assigned a Hadamard vector h. These assignments may be 
expressed in an outer products matrix 

where T denotes transposition. 
The encoding is used in the following manner. From an 

input vector X one forms the vector 

this is just a linear combination of Hadamard vectors h, 
with coefficients c=q,x', the scalar products of X with the 
vectors q. The operation Bx is performed by a device 
called Bidirectional Linear Transformer (BLT). The bidirec 
tional feature will become clear presently. The BLT is 
followed by a device that selects, from the linear combina 
tion 
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the Hadamard Vector that goes with the largest of the 
coefficients c, if unique. Hence, if c>c., for all Clz.f3, then 
the Hadamard vector he is selected. The device has been 
named Dominant Label Selector (DLS), because the code 
vectors he serve as labels for the Stored vectors q. The 
output he of the DLS is returned to the BLT for a backstroke, 
in which the BLT produces the vector 

x' = hgB = Xheld go = Nag, 
x 

where N is the dimension of the Hadamard vectors. The 
result holds because the Hadamard vectors are orthogonal 
and have the Euclidean norm VN. Division by N or, in case 
of a bipolar X, thresholding with a Sigmoidal function that 
ranges from -1 to 1, gives x'=q. But f is the index for which 
c., is maximum. Since c=q,x', the vector q is the stored 
vector which has the largest Scalar product with the input 
vector X. Therefore, if the DLS indeed selects from u=Bx' 
the dominant Hadamard vector, then the device consisting of 
the BLT and the DLS has perfect associative recall of up to 
N Stored vectors. The device has been called Selective 
Reflexive Memory (SRM)1-4). Its front end, the BLT, may 
be seen as a Bidirectional Associative Memory (BAM) 
5–7), with the rear thresholding removed, and the front 
thresholding optional. The DLS in the rear may be seen as 
a distributed winner-take-all net; instead of Selecting from 
an analog vector the maximium component, the net Selects 
the largest term in the Hadamard expansion of the vector. 
Distributing the winner-take-all proceSS improves fault 
tolerance, Since there are then no grandmother cells. 

Since the DLS output is the Hadamard vector that is 
closest to the vector u, the DLS may itself be seen as an 
asSociative memory with a complete Set of Hadamard vec 
tors as stored states. Therefore, this DLS is called a Had 
amard memory. 
A Hadamard memory cannot be constructed with the 

customary linear activation. Instead, one may consider a net 
with quadratic activation, So that the total current in the 
dendrite of neuron i is 

I =XSiyyy (1) 
i.k 

where y is the Signal from neuron i, determined from the 
activation V of the neuron by the output function S(..), 

(2) 

The function S(.) is restricted to be sigmoidal and 
antisymmetric, and to have the range -1,1). Hence, fully 
developed neuron Signals are bipolar. All indices range from 
1 to N, restricted to be a power of 2. In the simplest 
continuum model, the equations of motion are 

(3) 

where dot denotes differentiation with respect to time, and 
the term r, expresses a threshold or an external coupling. The 
first two terms in (3) have unit coefficients, but that does not 
constitute a physical restriction, Since this form can always 
be obtained by Scaling of the time and activation, together 



5,995,954 
3 

with a related adjustment of the neuron output function S(..). 
In view of the quadratic form of the dendrite current (1), one 
has here a case of higher-order neurons 8,9). A Hadamard 
memory is obtained by choosing the connection tensor as 

Siik = (11 NX hoiho ihok, (4) 
x 

where h is the ith component of the Hadamard vector he 
It has been shown 8 that a neural net with nonlinear 
activation is stable if the connection tensor is Symmetric, and 
if all tensor components for which two or more indices are 
equal vanish. The connection tensor given by (4) is indeed 
Symmetric. In order to Satisfy the Second condition, Subtrac 
tions have to be applied, to give the tensor 

(5) Siik = 

(11 NXhahjhak - Noor - Noikoi - Notion +2Noroioi, 
x 

where 8, is the Kronecker delta. The Subtractions are correct 
for a choice of Hadamard vectors such that their first 
component is +1, and the vector h has all components +1. 
The connection tensor (5) is referred to as Subtracted. It can 
be shown that all nonzero connection tensor components 
have the same value, which is positive; this is true for (4) as 
well as for (5). Hence, in a Hadamard memory, all Synapses 
are excitatory, and they all have the same Strength. Up to 
couplings, the Structure of the memory is entirely deter 
mined by the connections. 
The BLT output must be coupled to the Hadamard 

memory. This may be done in Several ways. In initial value 
coupling, the BLT output u is used as an initial value of the 
activation V, after multiplying with a properly chosen cou 
pling constant. The term r in the equation of motion (3) is 
then taken as constant, usually Zero. In the external coupling 
the activation is started out at Zero, and the BLT output u is 
applied to the term r of (3), after multiplication with a 
coupling constant. Combined coupling involves a combina 
tion of these Schemes. 
Computer simulations have shown the Hadamard 

memory to have perfect associative recall, for N=8 and 16, 
for each of these couplings, for a range of coupling 
constants, and for unsubtracted as well as Subtracted con 
nection tensors, (4) and (5). 

In practice, Hadamard memories become particularly 
important for large dimension N. For N a power of 2, and 
with well-chosen Hadamard vectors, the number of product 
synapses is N(N-1)/2 and (N-1)(N-2)/2 respectively for 
unsubtracted and Subtracted connection tensors, these num 
bers of connections are about the same as for a fully 
connected Hopfield memory 10). It is difficult to construct 
So many connections in electronic implementations for large 
dimension N. For instance, for N=1024, one would need 
522753 connections in the Subtracted case. Furthermore, 
each Synapse must compute the product of its two inputs, 
and that requires a four-quadrant multiplier, with at least 9 
transistors 11. For the example mentioned above, that 
comes to 4.7 million transistors for the Synapses alone! It is 
an object of the present invention to overcome the problem 
of the large number of connections and Synapse transistors, 
for Hadamard memories of large dimension N. 

With the Hadamard memory used as the rear stage of an 
SRM, many applications require the BLT to be adaptive. The 
connection matrix 
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of the BLT has outer-products structure, and it can therefore 
be modified by Hebb learning 12). This requires that a new 
Hadamard vector be presented to the back of the BLT, 
whenever a new vector q is to be Stored. An extension to 
the Hadamard memory is needed, that causes the memory to 
provide Such vectors in a simple manner, when learning is 
required. It is the further object of the present invention to 
furnish Such an extension. 

SUMMARY 

It is the object of the present invention to provide a 
method and means for constructing Hadamard memories of 
large dimension, in Such a manner that 1) the connections 
can be implemented in VLSI or wafer-scale integration, 2) 
the Synapses are Such that they can be implemented by 
Simple passive circuits, and 3) the Hadamard memory Sup 
plies heretofore unused Hadamard Vectors for the purpose of 
Hebb learning. 
Object 1) is met as follows. 

In the course of computer experiments we discovered 
that, as the dimension N is increased, the fraction of con 
nections that needs to be implemented in order to obtain 
good associative recall diminishes dramatically, to a degree 
that was completely unexpected. This Sets the Stage for 
massive pruning of the connections implied by (4) or (5), 
essentially without loSS of performance. 
The Set of Selected connections needs to be shift invariant, 

in order that the dendrites can be implemented in a compact 
fashion on a chip or wafer. There is also a slope limitation 
on the Segments of the dendrites, which is chosen to avoid 
overcrowding of the dendrites. 

Finally, the Selected connections must be chosen from the 
components i, j, k, for which the connection tensor (4) or (5) 
is nonzero. For large N, the calculation of these index 
combinations (i,j,k), based on the Hadamard vectors, is very 
lengthy. We give a shortcut for this calculation, based on 
group properties, Shift invariance, and the window property. 
From the resulting set of index combinations (i,j,k), a small 
Subset of connections to be implemented is Selected by using 
the slope limitation condition. An example result is shown in 
FIGS. 1 and 2, for dimension N=1024. 
Object 2) is met as follows. 
The quadratic dendrite current (1) requires use of product 

Synapses, which, for signal inputs y, and y, produce an 
output current proportional to yy. Although the product 
operation is simple in computer simulation, implementation 
in hardware is cumberSome, requiring at least 9 transistors. 
Considering the very large number of Synapses that need to 
be placed on a chip or wafer for large dimension N, it is 
important to simplify the Synapse circuitry, which means 
giving up the product function. We have found a Synapse 
circuit that is comprised of 8 resistors and 4 diodes, and that 
provides, for fully developed neuron Signals, the same 
output current as a product Synapse; however, this circuit 
requires a doubling of the neuron Signal lines, Such that one 
line carries the Signal Voltage, and the other line carries the 
opposite Voltage. For underdeveloped neuron signals, i.e., 
Signals with magnitude below unity, the Synapse output 
current deviates from the product function. However, com 
puter simulations of associative recall for N=1024 and 
N=2048 have shown that these “RD' synapses are 
Satisfactory, if the connections are chosen in the manner 
discussed. 
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Object 3) is met as follows. 
Hebb learning amounts to adding to the Synaptic matrix of 

the BLT a matrix 

where his the Hadamard vector that we want x to be labeled 
with. The Hebb addition (6) to the BLT matrix should be 
made only if the input vector X is much different from all the 
vectors that have been stored so far. That condition can be 
easily checked by computing the correlation between the 
input vector and output vector of the Hadamard memory. For 
large N, it is cumbersome to find the new Hadamard vector 
h, that must be presented to the back of the BLT for the Hebb 
learning (6). We have found a method of acquiring hy, 
Simply by letting the Hadamard memory determine this 
vector by associative recall, using as input vector a bipolar 
counter word of bit length m=log N, concatenated with 
Zeros. Incrementing the counter, everytime that learning is 
required as evidenced by a “weak’ correlation, and present 
ing the counter word to the Hadamard memory, then results 
in a new Hadamard vector for the Hebb learning. The 
method relies on the so-called window property of Had 
amard vectors that have been constructed from maximal 
length shift-register Sequences 13. 

DESCRIPTION OF THE DRAWINGS 

FIG. 1 depicts the layout of dendrites in a Single plane in 
VLSI or wafer-scale integration. 

FIG. 2 shows the arrangement of input lines, their ties, 
and the hookup of the operational amplifiers that implement 
the neurons. 

FIG. 3 shows the schematic for a synapse that employs 
passive circuitry. 

FIG. 4 shows a context in which a Hadamard memory can 
be used, and also illustrates a method for providing new 
Hadamard vectors for the purpose of Hebb learning. 

DETAILED DESCRIPTION 

The first object of the invention is to have a Hadamard 
memory with relatively few connections, the Second object 
is to modify the product Synapses Such that they can be 
implemented electronically by Simple circuits. The discus 
Sion of how to meet these objects is begun by generalizing 
the total dendrite current (1) to the expression 

I = XSify, yk), (7) 
i.k 

where f(y,y) product in (1). This step prepares for synapse 
functions other than a product of the two incoming neuron 
signals. The tensor S. in (7) is the connection tensor. This 
tensor Specifies how the neural net is hooked up; neurons 
and k are connected to a Synapse on the dendrite of neuron 
i., if and only if the tensor component S is not zero. The 
dendrite current (7) implies that the Synapses are uniform, 
Since they all have the same output function f(...). Unifor 
mity of the Synapses further requires that all nonvanishing 
components of the tensor S, have the same value; the latter 
is taken as unity, without loSS of generality. We also want the 
Synapses to be Symmetric, which requires that the function 
f(...) is Such that 

for all neuron Signals y and Z, and moreover that the 
connection tensor S satisfies the condition 
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(9) 

for all indices i, j, and k that belong to the index Set 2 that 
ranges from 1 to N. At this point we also want to Satisfy the 
restrictions that imply stability of nets with higher-order 
neurons 8, 

Si-Sik, 

Sik-Si-Sik, (10) 
and 

S-0, (1 1) 

valid for all i,j, and k belonging to the index Set S.2. The 
conditions (9) and (10) imply that there exist triads of 
indices, (i,j,k), for which the order of indices is irrelevant, 
and which determine the connections by the condition that 
the outputs of neurons and k are connected to a Synapse on 
dendrite i if and only if the indices i, j, and k form a triad. 
We choose to express the fact that neurons j and k are 
connected to a Synapse on dendrite i Symbolically as *k=i. 
We thus have that a triad (i,j,k) implies that jk=i, ij=k, 
ki=j, and further that the operation * is commutative. In 
order to extend the range of calculations, the operation * is 
endowed with associativity, so that i*(*k)=(ii)*k, and the 
brackets may be omitted. Suppose that triads (i,j,k) can be 
defined for all indices i and j of the Set 2, Such that keS2. 
Then, for given i there exists a triad (i,i,c). That implies that 
ci=i. For kzi there is a triad (i,j,k), implying that ij=k. 
Writing, in the last equation, i as ci gives cij=k, with the 
result that clc=k. Since k was unequal to i, but otherwise 
arbitrary in S2, it follows that clk=k for all keS2. Hence, 
the indeX c acts as an identity in the composition *. The last 
equation and (10) imply that kk=c; hence, under the 
composition *, each index is its own inverse. Hence, (k,k,c) 
is a triad, for all keS2. Now, all the conditions for a group 
are satisfied; hence, if triads (i,j,k) exist for all i and j that 
belong to S2, Such that keS2, then the triads define over the 
index Set 2 a commutative group with composition *. We 
call the group a triad group. The indeX c that acts as the 
identity may be assigned as unity, without loss of generality. 
It can be shown that a triad group exists for all N that are 
powers of 2. For other N a triad group does not exist. The 
triads (i,i,1) are called trivial triads; the remaining triads are 
nontrivial. Condition (11) is Satisfied by omitting connec 
tions with trivial triads. Because neuron #1 is then not 
connected to anything, it can be omitted. However, we still 
need a #1 output line for the DLS, if the DLS output is to be 
processed by the BLT in the backstroke. The #1 output line 
must then be permanently clamped to +1, 

y1=1. (12) 

The indices 2 to N can be permuted in such a manner that 
the triads become shift invariant. This means that, if (i,j,k) 
is a nontrivial triad, So is (i+1+1,k+1). If a Sum exceeds N, 
a wrapping is applied, by changing the Sum S to (S-2)mod 
(N-1)+2. The wrapping is Somewhat complicated because 
of the identity role played by the unit integer, and physically, 
because neuron #1 is not implemented. 

The shift-invariant triad group over the index Set 2 for 
N=2", 1<ms 21, can be constructed by the following pro 
cedure. The trivial triads are of course (1,i,i), withie C2. The 
nontrivial triads (i,j,k) have indices in S2', the set of indices 
from 2 to N. We will discuss how to recursively construct 
m-dimensional bipolar vectors g, ieS2, Starting out with g, 
which is chosen to have all components equal to -1. The 
components of g, are here denoted as g., C =1 to m. For m 
any of the special values 2, 3, 4, 5, 6, 7, 9, 10, 11, 15, 17, 
18, 20, and 21, the recursion formulas are 
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g;1...g. 1 for Cl=1 to n-1, (13) 

Si+1.m3.13.1+n: (14) 

where n is given in Table I. 

TABLE I 

2 1. 
3 1. 
4 1. 
5 2 
6 1. 
7 1. 
9 4 
1O 3 
11 2 
15 1. 
17 3 
18 7 
2O 3 
21 2 

For the remaining values of m: 8, 12, 13, 14, 16, and 19, Eq. 
(13) is used, but Eq. (14) is replaced by the formula given 
in Table II. 

For given ms 21, Starting with g as the all-negative 
bipolar Vector, the bipolar Vectors ga. g., . . . , gy may be 
calculated with the recursion formulas given. It turns out that 
the Sequence g, ga. . . . , gy contains all bipolar Vectors of 
dimension m, except for the all-positive vector. From this 
Sequence, the nontrivial triads (2.j,k) are found, for every j=3 
to N, by finding an index k such that 

g=-g: (15) 

Such an index jeS2' always exists. Once all the nontrivial 
triads (2,j,k) are known, shift invariance determines the rest 
of the nontrivial triads. 

It remains to choose a Subset B of the shift-invariant 
nontrivial triads group Such that the connections made 
according to the Subset can be implemented in VLSI or 
wafer-Scale integration. The object is here to choose the 
Subset B such that the dendrites do not get too crowded in 
the dendrite plane, i.e., the plane in which the dendrites are 
located. The description of this condition is given here in 
terms of the codiagonal, defined as the Straight line which 
contains the points for which j+k=N, where the indices and 
k Serve as Cartesian coordinates in the dendrite plane. If Y, 
0sys90, is the angle between the codiagonal and a 
Straight-line Segment of the dendrite, then the slope of the 
dendrite Segment is defined as tan Y. Overcrowding of the 
shift-invariant set of dendrites is avoided by limiting the 
Slopes of the dendrite Segments to a value equal to 3 or So. 

The Subset B of triads must itself be shift invariant, in 
order to assure that the dendrites form a shift-invariant Set. 
The dendrite ifi must connect the Synapses with outputs to 
neuron i; let these Synapses be chosen according to the 
Subset B, of B. B. consists of the triads (i,j,k) of B for which 
the first index has the value i. The dendrite for neuron #2 

15 

25 

35 

40 

45 

50 

55 

60 

65 

8 
must connect the Synapses according to the Set B, and there 
is a question of the order in which these connections are to 
be made. The ordering protocol requires that the connection 
Sequence of Synapses according to the Set B of triads (2,j,k) 
be Such that j-k changes monotonically along the dendrite. 
An example of a dendrite that Satisfies the ordering protocol 
as well as the Slope limitation condition for the dimension 
N=1024 is depicted in FIG. 1, where the dendrite #2 is 
denoted as 1. The dendrite runs roughly along the codiago 
nal. In this case the slopes of the dendrite Segments are all 
smaller than 2.5. The complete set of dendrites is found by 
parallel displacement of dendrite #2, with displacement 
vectors that are multiples of the vector with Aj=1 and Ak=1. 
In FIG. 1 only a small fraction of the dendrites are shown, 
lest the dendrite area appears completely black. The den 
drites shown have a spacing of 64. Dendrite #66 is marked 
as 2, and dendrite #1024 is marked as 3. 
The question remains how to organize the input lines to 

the dendrites in VLSI or wafer-scale integration. The orga 
nization is shown in FIG. 2, which depicts a preferred 
embodiment for the dimension N=1024. As before, the 
integer indices j and k in a triad (2.j,k) serve as Cartesian 
coordinates, the coordinate System being marked as 1. 
Implementation of the triad (2.j,k) involves a Synapse with 
input lines and k, and an output to dendrite #2, denoted as 
2 in the Figure. The synapses on dendrite #2 are shown in 
FIG. 2 as Small Squares, located on the kinks in the dendrite 
#2. For instance, the Synapse that implements the triad 
(2,431,563) is denoted as 3. A reverse wrapping has been 
applied if it improves the Simplicity and compactness of the 
chip; for instance, k=563 was actually plotted as k=-460. 
From the dendrite #2, the other dendrites are found by 

parallel displacement, using displacement Vectors that are 
multiples of the vector (Aj.Ak)=(1,1), as discussed above. In 
FIG. 2, only two dendrites are shown: #2, denoted as 2, and 
#1024, denoted as 12. In between these first and last 
dendrites, the dendrite plane contains 1021 other dendrites, 
a small fraction of which are shown in FIG.1. In accord with 
the use of the indices j and k in a Cartesian coordinate 
System, the Signal input lines to the Synapses are arranged in 
two planes that are parallel and close to the dendrite plane; 
in each of the two planes the lines are parallel, and the lines 
in one plane are perpendicular to the lines in the other plane. 
The j plane contains “vertical” lines of fixed value; the 
vertical line j=2 is denoted in the FIGS. 2 as 4. The k-plane 
contains “horizontal” input lines; the horizontal line k=258 
is denoted in the Figure as 5. The input lines in the two 
planes are connected with ties at the points that are indicated 
with circles in the Figure. The ties are short conductors that 
run perpendicular to the planes. The ties connect lines that 
have the same index. Therefore, they are placed at the points 
in the coordinate System where j=k. These points lie on a 
"diagonal', and they are near one border of the chip or 
wafer; this border may be called the “lower border', with the 
understanding that it runs under a 45° angle in the Figure. 
The tie at j=k=258 is denoted in the Figure as 6. The 
wrapping, defined above, requires identification of certain 
lines with different indices. For instance, the vertical line 
with j=1025 is also labelled as j=2, as Suggested by the 
coordinates shown in the Figure at the point denoted as 7. 
The wrapping requires that ties are also placed along a 
diagonal near the “upper border of the chip or wafer. An 
example for Such a tie is denoted as 8. The Figure shows 
input lines at Spacings of 64. The actual spacing is unity, but 
lines with that spacing cannot be shown on the Scale of the 
Figure, Since the lines would completely fill the chip area an 
make it appear black. 
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The Synapse circuit to be chosen requires a doubling of 
the input lines, so that every j line doubles into a j and a j 
line, and every kline doubles into a kline and a kline. The 
+ lines and the -lines carry opposite Voltages. The input line 
doubling allows a simple passive circuit for the Sympses, in 
a manner to be discussed. For clarity, the doubling is not 
shown in FIG. 2. Ties are made only between lines of the 
Same type. 
At each synapse location (j,k) connections are made from 

the Synapse input ports called a and a respectively to the 
j line and the j line, and connections are made from the 
remaining Synapse input ports b, and b respectively to the 
k line and the k line. These connections can be made very 
Short, because of the placement of the Synapse. The Synapse 
output port is connected to the dendrite that runs essentially 
through the point (jk), and thus this connection can be made 
very Short also. The Synapse can be implemented entirely in 
Silicon, with the circuit components located conveniently in 
a compact cluster centered at or near the point (jk), at 
convenient depths, reckoned from the dendrite plane. The j, 
j, k and k lines, and the dendrites, are implemented on the 
chip or wafer by aluminum Strips or other electrical con 
ductors. 

The dendrites collect the Synapse output currents, and 
connect to the inputs of the amplifiers that implement the 
neurons. The upper insert in FIG. 2 shows how these 
connections are made, by depicting neuron #2, marked as 9, 
with input provided by dendrite #2, marked as 10, and with 
the output connected to the horizontal line with k=2, marked 
here as 11. Again the doubling of the neuron Signal lines is 
not shown, really, amplifier 9 has two outputs, Say, c, and c, 
and the Voltages on these outputs have opposite values. 
The amplifiers that serve the role of neurons can be 

implemented as operational amplifiers for which the invert 
ing input is used as input port, while the noninverting input 
is grounded. A Sigmoidal output function is obtained either 
as a consequence of the Saturation near the power Supply 
Voltages, or by the use of Silicon diodes or Zener diodes in 
the feedback circuit, in a manner that is known to those 
skilled in the art. The amplifiers need to have two output 
ports, c, and c, with opposite output Voltages. This can be 
achieved in a manner that is known to those skilled in the art. 
Power supply voltages may be chosen as +2.5V. 
The layout depicted in FIG. 2 features short connections 

and a compact design for VLSI or wafer-Scale integration. 
FIG. 3 shows the Simple passive circuit for the Synapses. 

A single Synapses is shown with input ports a, a, b, and 
b, respectively marked as 1, 2, 3, and 4, and with an output 
port marked as 5. The circuit consists of eight resistors with 
resistance R, and four Substantially identical diodes, hooked 
up as shown. It is easy to see that, with Voltages X, -X, y, and 
-y applied respectively to the input ports a, a , b, and b, 
the current from the output port 5 to ground is approximately 
equal to 

where d is the forward diode barrier Voltage, and g() is a 
function Such that g(q)=q for postive q, and g(q)=0 for 
negative or Zero q. For implementations in Silicon, the 
diodes will have a forward barrier of about 0.6V. Computer 
Simulations have shown Such a barrier to be acceptable, if 
the maximum neuron output Voltage is chosen as V=2.5V or 
SO. 

The choice of the resistance R is to be made with the 
following considerations. The resistance R is related to the 
input resistance Ro of the amplifiers and the feedback 
resistance R of the amplifiers through the relation 
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Al-RRo/R, 

where u is the slope of the Sigmoid function S(...) (see (2)), at 
the origin. Computer Simulations have shown the value u=50 
to give good results, the performance of the Hadamard 
memory does not depend much on the precise value of u. 
The choice of amplifier is influenced by the input resistance 
Ro, the input capacitance Co, the Slew rate, the input noise 
current, and the ease of VLSI implementation in silicon. The 
RoCo time corresponds to the time Step At=1 in the theory 
that uses normalized equation of motion (3). The RoCo time 
and the Slew rate need to be appropriate to the Speed that is 
required of the Hadamard memory; computer Simulations 
have shown that the Hadamard memory settles its output 
within about /3 of the RC time, for u=50, and for initial 
value coupling with coupling constants near unity. The value 
of R also influences the magnitude of the current into the 
amplifiers; this current should be compared with the input 
noise current. It is emphasised that the Hadamard memory 
has a large measure of noise tolerance, So that rather Small 
Signal-to-noise ratioS are allowable at the amplifier input. Of 
course, the resistance R and the Voltage V influence the 
power dissipation on the chip or wafer. Finally, there are 
practical limitations on the values of R that can be imple 
mented in a simple manner in Silicon. The considerations 
mentioned can be used by those skilled in the art to arrive at 
a Sensible choice of the resistance R, and the feedback 
resistance R, together with the amplifier parameters. 
The purpose of FIG. 4 is twofold: 1) to show a context in 

which the Hadamard memory can be used, and 2) to 
Schematically depict an extension of the Hadamard memory 
that causes the memory to provide a new Hadamard Vector 
for the purpose of Hebb learning, whenever Such learning is 
required. Shown is an SRM with frontStage 1 and rear stage 
2. The front stage is a BLT as described in the background 
section. The BLT transforms an input vector X into a vector 
u, which is a linear combination of Hadamard vectors, with 
as coefficients the correlations between X and the Stored 
vectors q, The vector u is used as the input to the rear Stage 
2. The rear Stage is a DLS as discussed in the background 
Section; it is a Hadamard memory, i.e., an associative 
memory that has a complete Set of Hadamard Vectors as 
Stored States. 
The Hadamard memory 2 returns to the BLT 1 the vector 

he, the Hadamard vector 4 that is dominant in the vector u. 
In the backstroke 5, the BLT 1 acts on he, and produces as 
output 6 the stored vector q that is nearest the input X, 
marked as 7. Upon presentation of an input vector X that is 
far from any of the Stored vectors, there is need for activating 
a Hebb learning procedure, that ultimately must result in the 
addition of the vector X to the set of stored vectors. The 
learning procedure requires the addition of a matrix (6) to 
the connection matrix B of the BLT. The vector h, in (6) is 
a “new” Hadamard vector, i.e., a Hadamard vector that has 
not yet been used as a label for a stored state. The Hebb 
learning (6) is indicated schematically in FIG. 4 by heavy 
lines with arrows. The heavy vertical line 8 depicts the 
transfer of the input vector X to the BLT, for use in the outer 
product (6), and likewise, the heavy horizontal line 9 depicts 
the transfer of the vector h, to the BLT, for use in (6). A 
discussion of the physical proceSS used for the modification 
of the BLT synapses in the manner of (6) falls outside the 
present invention. The Hebb learning is discussed here 
merely to provide context for the extension of the Hadamard 
memory, which causes the Hadamard memory to provide a 
new Hadamard vector h, when learning is required. The 
extension comprises a correlator 10, a bipolar counter 11, 
and Switches 12. The bipolar counter has the bit length 

(17) 
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m=logN. The correlator routinely computes the Scalar prod 
uct between the vector u and the vector he, the latter vector 
being the response of the Hadamard memory to its input u 
that is provided by the BLT. When the scalar product 
computed by the correlator falls below a predetermined 
positive number that may be considered a learning 
parameter, processes are activated that are indicated by the 
heavy lines 13, 14, and 15. First, a control signal along line 
13 causes the counter to be incremented. Second, the bipolar 
counter word is concatenated with a string of Zeros, Such as 
to form an N-dimensional vector w, that is denoted as 16. 
Third, the vector w is presented to the Hadamard memory 2 
as an input. The Second and third steps are performed 
together by Switches 12, which connect the first m input 
terminals of the Hadamard memory with the counter output, 
and which ground the remaining input terminals m+1 to N. 
In response to the input vector W, the Hadamard memory 2 
produces as output hy, the Hadamard vector for which the 
components 2 to m+1 are proportional to the bipolar counter 
word. This result is obtained because of the manner in which 
the memory 2 is connected. As a result of the peculiar 
connections, the memory 2, after being presented an input 
vector, always Settles into a Stationary State that is one of a 
complete set of Hadamard vectors of a kind that display shift 
invariance, and that can be generated by a maximal-length 
shift-register sequence 13). Such Hadamard vectors have 
the window property 13). As a result, there exists a one 
to-one correspondence between these Hadamard vectors and 
the bipolar vectors of dimension m. The latter vectors may 
be seen as the counter words. The correspondence is realized 
Simply by letting the Hadamard memory 2 respond to the 
vector W described above, the response being the Hadamard 
Vector neareSt W. 

Several comments are in order. 
First, we report the results of extensive numerical com 

putations of associative recall of the Hadamard memory. 
These numerical computations were done for data dimen 
Sion N=1024, for each input vector, the computations 
involve numerical integration of the 1023 coupled nonlinear 
differential equations (3), using a dendrite current I pro 
vided by 28 synapses for each value of the index i, with 
connections chosen from a Set B of nontrivial Synapses, B 
being a Subset of the triad group over the integers from 1 to 
1024. The set B was determined by shifts of the 28 triads 
(2.5.12), (2,502,545), (2,512.517), (2,16,1019), (2,30,1013), 
(2.53,967), (2,58,1001), (2,77,956), (2,127,905), (2,152, 
887), (2,115,941), (2,172,870), (2.252,785), (2,257,771), 
(2,343,684), (2,390,660), (2,408,638), (2,427,609), (2,477, 
575), (2,479,551), (2.207,798), (2,193,852), (2,283,736), 
(2,187.830), (2,328,697), (2,384,679), (2,429,569), and 
(2,431,563). These triads were determined by the procedure 
discussed above. Applying shifts to the triads means adding, 
to all integers of each triad, a fixed integer p, which 
Succesively is taken as 0, 1, ... 1023. Wrapping is applied 
when necessary. The collection of all triads formed by 
applying shifts to the 28 triads shown above is the set B; 
clearly B is shift-invariant. The dendrites shown in FIGS. 1 
and 2 are constructed for this case. Hence, dendrite #2, 
marked in FIG. 1 as 1, and marked in FIG. 2 as 2, connects 
the Synapses that correspond to the list of triads (2,j,k) 
shown. AS discussed above, the indices and k are used as 
Cartesian coordinates for the Synapse locations in the den 
drite plane, as shown in FIGS. 1 and 2. 

The set B of triads used includes only about 5.5% of all 
nontrivial triads in the triad group over G2. 

The Synapses used in the numerical computations all have 
the RD circuit of FIG. 3, giving an output current to ground 
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12 
that is Substantially proportional to the function g(x+y)-g 
(x-y-d) discussed above, where d=0.48, which corre 
sponds to the diode barrier of 0.6V of silicon diodes, after 
applying a Scale adjustment from practical Signal Voltage 
limits of +2.5V to the bipolar values * 1 used in the theory. 
The numerical integrations of the equations of motion (3) 

were made with time steps of magnitude RoC/50, where Ro 
and Co are respectively the input resistance and input 
capacitance of the operational amplifiers that represent the 
neurons. AS aluded to above, in (3) we have Ro=1 and Co=1 
as a matter of normalization. The neuron output function 
S(..), that occurs in (2), was chosen as a piece wise linear 
function with a gain u (slope) of 50. This means that the 
amplifierS Start to Saturate to the bipolar values t1 at 
activations of t0.02. Initial-value coupling was used, with a 
coupling constant of unity. 

In the computations of associative recall, the input vectors 
u to the Hadamard memory were chosen as bipolar cor 
rupted versions of Hadamard vectors, the corruption being 
applied to 400 of the 1024 bipolar components; hence, the 
components at 400 places were multiplied by -1. The 
Hamming distance of 400 between input vector and the 
nearest Hadamard vector amounts to an angle of 77 
between the two vectors. In the actual computations, the 
input vectors always had the Hadamard vector h as the 
nearest Hadamard vector. This restriction does not constitute 
a loSS of generality, because of the invariance of the dynam 
ics under the Hadamard group 15. 
The computations discussed were performed for a 

pseudo-random sample of input vectors. The 26973 cases 
computed So far have given perfect associative recall, with 
the exception of 3 cases, for which the memory Settled on the 
wrong Hadamard vector. 
The good associative recall, in spite of the skimpy Set of 

connections that include only 5.5% of the full set implied by 
(5), is not well understood. It has to do with the exquisite 
Selectivity of the keys that are provided by the connections 
according to triads; these keys match the class of Hadamard 
vectors used. The operation of these keys may be likened 
somewhat to the transcription of DNA. 
The connections have here been defined by a Subset B of 

the triad group. A construction of the triad group has been 
given here by means of recursion. The triad group can also 
be derived in another manner which is equivalent to our first 
procedure, but is much more cumberSome when N is large. 
The alternate method goes back to the Subtracted connection 
matrix (5). As a first step, a complete set of Hadamard 
vectors he, C-1 to N, is calculated in Some manner. Then 
one calculates all (N-1)(N-2)(N-3)/3 components of the 
tensor S., for which none of the indices is unity and all 
indices are different, Skipping components with permuted 
indices. The set of triplets {i,j,k} for which Sz0 then 
define the full set of connections for the Hadamard memory. 
If this procedure is followed for N a power 2, and if the 
Hadamard vectors are constructed from maximal-length 
shift-register sequences, then the triplets {i,j,k} are identical 
to the nontrivial triads of the triad Set over S2, and hence, 
the alternate procedure is equivalent to our first. The equiva 
lence is due to the fact that 1) the Hadamard vectors 
constructed from maximal-length shift-register Sequences 
form a group under component-wise multiplication, 2) this 
group is a representation of the triad group, and 3) the 
Hadamard vectors So constructed have the window property 
13). 
Although the construction of Hadamard vectors from 

maximal-length shift-register Sequences requires N to be a 
power of 2, the alternate procedure can be executed for Some 



5,995,954 
13 

other dimensions N. For instance, there is the construction of 
Hadamard vectors by quadratic residues, valid for any 
dimension N that is a multiple of 4 and equal to a prime plus 
unity 13). If, for such an N that is not a power of 2, the 
alternated procedure is followed, the number of nonzero 
components of the connection tensor S is of order N, 
instead of O(N’), found when N is a power of 2, and our first 
procedure is followed. This proliferation of connections is 
due to the loSS of group property of the Hadamard vectors. 
Since the proof of stability 4 of Hadamard vectors in the 
discrete model relies on the group property of the Hadamard 
vectors, this Stability is then in question also. Finally, there 
is the disadvantage that the nonvanishing components of the 
connection tensor S. do not all have the same value. 

There exist dimensions N that are of the above mentioned 
form, but which also are powers of 2; N=4, 8, 32 are 
examples. For N=4 or N=8 the Hadamard vectors con 
Structed by quadratic residues coincide with the Hadamard 
vectors constructed from maximal-lenght shift-register 
Sequences, and therefore the alternate procedure, using the 
quadratic residue construction, leads to the triad group. 
However, for N=32 the Hadamard vectors constructed from 
quadratic residues are essentially different from those con 
Structed from maximal-length shift-register Sequences, and 
they do not form a group under component-wise multipli 
cation. As a consequence, there is no triad group, and the 
number of connections is undully large. Therefore, not only 
must the dimension N be restricted to a power of 2, but one 
also needs to use Hadamard vectors generated from 
maximal-length shift-register Sequences, if one wants to 
follow the alternate procedure for finding the triad group. 
Of course, one can ignore the triad group altogether, and 

choose a Subset of connections from the connections implied 
by the connection tensor (4) or (5). However, whether or not 
the triad group is acknowledged, this procedure is equivalent 
to the method that is phrased in terms of the triad group. 

Switches may be chosen as Solid-State Switches, built in 
CMOS, if great speed is not required. Substantial simulta 
neity of Switching of the different components of vectors 
may be an issue, depending on the Slew rate of the 
amplifiers, and high-speed Switches may be required for 
proper operation of the Hadamard memory. 

The three couplings, initial value coupling, external 
coupling, and combined coupling, that were described 
briefly in the background Section, are used in the present 
invention in the following manner. 

In all cases considered, the input currents u, n=2 to N, are 
applied directly to the amplifier inputs in a Substantially 
Synchronous manner. If this is done to amplifiers without 
input Switches, the coupling of input currents to the Had 
amard memory constitutes an external coupling, with an 
initial activation that is “left over” from the previous round 
of associative recall. For this coupling, computer Simula 
tions have shown the Hadamard memory to perform well if 
the currents u, have the magnitude V/R, where V is the 
maximum magnitude of the neuron Signals, and R is the 
resistance of the resistors in the synapse circuit of FIG. 3. 

If Switches are provided between dendrites and amplifier 
inputs, and the Switches are opened before the input currents 
u, n=2 to N, are applied to the amplifier input ports, then the 
Synapse outputs are disconnected from the amplifier inputs, 
So that the amplifier activations are just the current inputs. 
By closing the input Switches in Simultaneous fashion, the 
full net dynamicS is Started, using as initial activations the 
input currents u. If the input currents u, are maintained 
while the dynamical development of the Signal State 
proceeds, we have a case of combined coupling. If the input 
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14 
currents are reduced to Zero in Simultaneous fashion shortly 
after the net dynamics has been Started, the coupling is initial 
Value coupling. 

In FIGS. 1 and 2 we admit to some fudging that was done 
because the number of gaps between adjacent dendrites is 
not divisible by 64. 
The recursions described by formula (13) and (14), 

together with Tables I and II, for values of m from 2 to 20, 
have been derived from Table A.2. of 13, by transcribing 
the polynomials as products, in a manner that will be clear 
from inspection. The recursion formula for m=21 was deter 
mined by a numerical computation, using the criterion that 
the Sequence of Vectors g. generated must include all 
m-dimensional bipolar vectors, with the exception of the 
all-positive vector. 
The concept of Selective Reflexive Memory (SRM) was 

introduced and developed in 1-4,14-16). The SRM has as 
rear Stage a Hadamard memory. Investigation of the asyn 
chronous discrete model of the Hadamard memory has been 
reported in detail in 4, and a Summary on this work is 
shown in 2). The continuous model for the Hadamard 
memory is discussed in 14), and a partial Summary is given 
in 3). The group theory for Hadamard memories is devel 
oped in 15 and 16). An overview of the SRM, with 
emphasis on the Hadamard memory, is given in 16. The 
extension of the Hadamard memory, arranged to provide 
new Hadamard vectors for Hebb learning purposes is dis 
cussed in 16. 
The invention is not limited by the embodiments shown in 

the drawings and described in the description, which are 
given by way of example and not of limitation, but only in 
accordance with the Scope of the appended claims. 
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I claim: 
1. An apparatus for an electronic neural network that 

Serves as an associative memory in which the Stored States 
are Hadamard vectors of dimension N, the said dimension N 
being a power of 2, the Said apparatus comprising: 

circuit means for N-1 amplifiers A, n=2 to N, each of the 
Said amplifiers having an input port and two output 
ports denoted as output port c, and output port c, the 
input port of amplifier A, being denoted as A(a), the 
output port c of amplifier A, being denoted as A(C) 
and the ouput port c of amplifier A, being denoted as 
A(c), said circuit means being Such that the said input 
port is held Substantially at Zero potential, the Voltages 
at the Said output port c, and the Said output port c 
have Substantially opposite values, and the Voltage at 
the said output port c is S(I), where I is the current into 
the Said input port, and S() is a sigmoidal function 
which is Substantially antisymmetric and ranges Sub 
stantially from -V to V, V being a predetermined 
positive Voltage; 

circuit means for K electronic units, K being divisible by 
3, each Said electronic unit being called a Synapse, each 
Said Synapse having one output port and four input 
ports, denoted as input port a, input port a , input port 
b, and input port b, the Said circuit means being Such 
that, when Substantially opposite Voltages are applied 
to the Said input port a and the said input port a , and 
Substantially opposite Voltages are applied to the Said 
input port band the said input port b, the current from 
the Said output port to ground is Substantially propor 
tional to g(x+y-d)-g(x-y-d), where X and y are 
respectively the Voltages at the Said input port a, and 
the Said input port b, and where furthermore d and d. 
are constants, and g(.) is a function Such that g(q)=q if 
q>0, else Zero; 

connections between each of the Said amplifiers and a 
plurality of Said electronic units, a connection existing 
between A.(c.) and the said input port a. of a said 
Synapse, a connection existing between A.(c), and the 
Said input port a of the last Said Synapse, a connection 
existing between A.(c) and the said input port b of the 
last said Synapse, a connection existing between A.(c) 
and the Said input port b of the last Said Synapse, and 
a connection existing between the Said output port of 
the last said Synapse and A(a), if and only if the 
integers i, j, and k occur together in a triad that belongs 
to a fixed shift-invariant triad set B, the said triad set B 
having a cardinality equal to K/3, the Said triad Set B 
being a subset of the set of nontrivial triads for the 
shift-invariant triad group over the integers from 1 to N, 
the Said triad group being Such that the integer 1 Serves 
as the identity element; 

N-1 conductors C, n=2 to N: 
a connection, for every n=2 to N, between conductor C, 

and A.(a); and 
circuit means for applying, for every n=2 to N, a current 
u to conductor C, the Said current u, being applied for 
all n=2 to N in a Substantially simultaneous manner; 
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16 
circuit means for Outputting Voltages y, n=1 to N, y 

being the said predetermined positive voltage, and y, 
n=2 to N, being the Voltage on A(c.). 

2. An apparatus according to claim 1, further including: 
circuit means for a bipolar counter, the Said bipolar 

counter having a bit length m=log-N, the Said bipolar 
counter having output ports p, q=1 to m, the voltage on 
p, being called the bipolar counter output q; 

circuit means for a correlator, the Said correlator having an 
output port, the Said circuit means being Such that the 
Voltage at the last Said output port is Substantially 
proportional to the Scalar product of a first vector and 
a Second vector, the Said first vector being the Said input 
Vector to the Said associative memory, and the Said 
Second vector having as components the Said Voltages 
y, n=1 to N, 

circuit means for incrementing the Said bipolar counter; 
circuit means for applying, in Substantially simultaneous 

fashion for every integer n from 2 to N, a current w, to 
conductor C, the Said current W., for nsm+1, being 
proportional to the Said bipolar counter output q, where 
q=n-1, and the Said current W., for n>m+1, being 
Substantially Zero; 

circuit means for activating the Said incrementing, as a 
result of the last Said Voltage being less than a prede 
termined value; and 

circuit means for commencing the Said applying, as a 
result of the Said incrementing. 

3. An apparatus according to claim 1, in which the Said 
circuit means for the Said electronic unit is comprised of 
connections, resistorSR, b=1 to 8, and diodes D, c=1 to 4, 
the terminals of resistor R, being denoted as R(1) and 
R(2), the terminals of diode D being denoted as D.(1) and 
D(2), Such that current can be passed through the said diode 
D. in the direction from D.(1) to D.(2), c=1 to 4, the said 
connections being Such that the Said output port of the Said 
Synapse is connected to D (2), D(1), D(2), and D.(1), 
D. (1) is connected to R(1) and R(1), D(2) is connected to 
R(1) and R(1), D(1) is connected to R(1) and R(1), 
D(2) is connected to R7(1) and R(1), the said portal of the 
last Said Synapse is connected to R. (2) and Rs(2), the said 
port a of the last said Synapse is connected to R(2) and 
Rs(2), the said port b of the last said synapse is connected 
to R(2) and R(2), and the said port b of the last Said 
Synapse is connected to R(2) and R7(2). 

4. An apparatus according to claim 2, in which the Said 
circuit means for the Said electronic unit is comprised of 
connections, resistors R., b=1 to 8, and diodes D, c=1 to 4, 
the terminals of resistor R, being denoted as R(1) and 
R(2), the terminals of diode D being denoted as D.(1) and 
D(2), Such that current can be passed through the said diode 
D. in the direction from D.(1) to D.(2), c=1 to 4, the said 
connections being Such that the Said output port of the Said 
Synapse is connected to D (2), D(1), D(2), and D.(1), 
D. (1) is connected to R(1) and R(1), D(2) is connected to 
R(1) and R(1), D(1) is connected to Rs.(1) and R(1), 
D(2) is connected to R7(1) and R(1), the said portal of the 
last Said Synapse is connected to R. (2) and Rs(2), the said 
port a of the last said Synapse is connected to R(2) and 
Rs(2), the said port b of the last said synapse is connected 
to R(2) and R(2), and the said port b of the last Said 
Synapse is connected to R(2) and R,(2). 

5. An apparatus for an electronic neural network that 
Serves as an associative memory in which the Stored States 
are Hadamard vectors of dimension N, the said dimension N 
being a power of 2, comprising: 
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circuit means for N-1 amplifiers A, n=2 to N, each of the 
Said amplifiers having an input port, and two output 
ports denoted as output port c, and output port c, the 
input port of amplifier A, being denoted as A(a), the 
output port c of amplifier A, being denoted as A(c), 
and the output port c of amplifier A, being called 
A(c), said circuit means being Such that the said input 
port is held Substantially at Zero potential, the Voltages 
at the said output port c and the said output port c 
have Substantially opposite values, and the Voltage at 
the said output port c is S(I), where I is the current into 
the Said input port, and S() is a sigmoidal function 
which is Substantially antisymmetric and ranges Sub 
stantially from -V to V, V being a predetermined 
positive Voltage; 

circuit means for K electronic units, K being divisible by 
3, each of the Said electronic unit being called a 
Synapse, each Said Synapse having one output port and 
four input ports, denoted as input porta, input portal, 
input port b, and input port b, the Said circuit means 
being Such that, when Substantially opposite Voltages 
are applied to the Said input port a and the Said input 
port a, and Substantially opposite Voltages are applied 
to the said input port band the said input port b , the 
current from the Said output port to ground is Substan 
tially proportional to g(x+y|-d)-g(x-y-d), where X 
and y are respectively the Voltages at the Said input port 
a and the said input port b, and where furthermore d 
and d are constants, and g(.) is a function Such that 
g(q)=q if q>0, else Zero; 

a conductor for every integer n=2 to N, the Said conductor 
being called the dendrite n, 

circuit means for a Switch for every integer n=2 to N, the 
said Switch being of SPST type, the said Switch having 
two terminals, the Said terminals being called Sands, 
the Said Switch being called the Switch n; 

a connection, for every n=2 to N, between the Said 
terminal S of the Said Switch n and the Said dendrite n; 

a connection, for every n=2 to N, between the Said 
terminal S of the said Switch n and A(a); 

connections between each of the Said amplifiers and a 
plurality of Said electronic units, a connection existing 
between A.(c.) and the said input port a. of a said 
Synapse, a connection existing between A.(c), and the 
Said input port a of the last Said Synapse, a connection 
existing between A.(c) and the said input port b of the 
last said Synapse, a connection existing between A.(c) 
and the Said input port b of the last Said Synapse, and 
a connection existing between the Said output port of 
the last Said Synapse and the dendrite i, if and only if the 
integers i, j, and k occur together in a triad that belongs 
to a fixed shift-invariant triad set B, the said triad set B 
having a cardinality equal to K/3, the Said triad Set B 
being a subset of the set of nontrivial triads for the 
shift-invariant triad group over the integers from 1 to N, 
the Said triad group being Such that the integer 1 Serves 
as the identity element; 

conductors C, n=2 to N, 
a connection, for every n=2 to N, between conductor C, 

A.(a); and 
circuit means for applying, for every n=2 to N, a current 
u to conductor C, the current u, being applied for all 
n=2 to N in a Substantially simultaneous manner; and 

circuit means for Outputting Voltages y, n=1 to N, y 
being the Said predetermined positive Voltage, and y, 
n=2 to N, being the Voltage on A(c.). 
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6. An apparatus according to claim 5, further including: 
circuit means for a bipolar counter, the Said bipolar 

counter having a bit length m=log-N, the Said bipolar 
counter having output ports p, q=1 to m, the Voltage on 
p, being called the bipolar counter output q; 

circuit means for a correlator, the Said correlator having an 
output port, the Said circuit means being Such that the 
Voltage at the last Said output port is Substantially 
proportional to the Scalar product of a first vector and 
a Second vector, the Said first vector being the Said input 
Vector to the Said associative memory, and the Said 
Second vector having as components the Said Voltages 
y, n=1 to N, 

circuit means for incrementing the Said bipolar counter; 
circuit means for opening, for each n=2 to N, the Said 

Switch n; 
circuit means for applying, in Substantially simultaneous 

fashion for each integer n from 2 to N, a current W, to 
conductor C, the Said current W., for nsm+1, being 
proportional to the Said bipolar counter output q, where 
q=n-1, and the Said current W., for n>m+1 being 
Substantially Zero; 

circuit means for closing, for each n=2 to N, the Said 
Switch n, the Said circuit means being Such that the Said 
closing being done in Substantially simultaneous fash 
ion for all b=2 to N: 

circuit means for activating the Said incrementing, as a 
result of last Said Voltage being less than a predeter 
mined value; and 

circuit means for commencing the Said applying, as a 
result of the Said incrementing. 

7. An apparatus according to claim 5, in which the Said 
circuit means for the Said electronic unit is comprised of 
connections, resistorSR, b=1 to 8, and diodes D, c=1 to 4, 
the terminals of resistor R, being denoted as R(1) and 
R(2), the terminals of diode D being denoted as D.(1) and 
D(2), Such that current can be passed through the said diode 
D. in the direction from D.(1) to D.(2), c=1 to 4, the said 
connections being Such that the Said output port of the Said 
Synapse is connected to D (2), D(1), D(2), and D.(1),D 
(1) is connected to R(1) and R(1), D(2) is connected to 
R(1) and R(1), D(1) is connected to R(1) and R(1), 
D(2) is connected to R7(1) and R(1), the said portal of the 
last Said Synapse is connected to R. (2) and Rs(2), the said 
port a of the last said Synapse is connected to R(2) and 
Rs(2), the said port b of the last said synapse is connected 
to R(2) and R(2), and the said port b of the last Said 
Synapse is connected to R(2) and R7(2). 

8. An apparatus according to claim 6, in which the Said 
circuit means for the Said electronic unit is comprised of 
connections, resistorSR, b=1 to 8, and diodes D, c=1 to 4, 
the terminals of resistor R, being denoted as R(1) and 
R(2), the terminals of diode D being denoted as D.(1) and 
D(2), Such that current can be passed through the said 
diode, from D.(1) to D. (2), c=1 to 4, the said connections 
being Such that the Said output port of the Said Synapse is 
connected to D (2), D(1), D(2), and D.(1), D (1) is 
connected to R(1) and R(1), D(2) is connected to R(1) 
and R(1), D(1) is connected to Rs.(1) and R(1), D(2) is 
connected to R7(1) and Rs.(1), the said portal of the last Said 
Synapse is connected to R. (2) and Rs(2), the said port a of 
the last Said Synapse is connected to R. (2) and Rs.(2), the 
said port b of the last said Synapse is connected to R(2) and 
R(2), and the said port b of the last said Synapse is 
connected to R(2) and R7(2). 

9. In a neural network that includes Synapses and neurons 
A, n=2 to N, N being a power of 2, Said Synapses having 
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two inputs and one output, a method for connecting neurons 
to Synapses, the Said method comprising: 

constructing the shift-invariant triad group over the inte 
gers from 1 to N, the Said group being Such that the 
integer 1 Serves as the identity element, the Structure of 
the group being expressed by triads, the triad with 
integers i, j, and k being denoted by (i,j,k), 

Selecting the Set S of Said triads that do not include the 
integer 1, 

Selecting a proper Subset B of S, Said Subset B being 
shift-invariant; and 

connecting the output of neuron A, and the output of 
neuron A respectively to one input and to the other 
input of a Said Synapse, and connecting the output of 
the last Said Synapse to the input of neuron A, if and 
only if the triad (i,j,k) belongs to the said Subset B. 

1O 
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10. A method according to claim 9, further including the 

Steps of 
Selecting a Subset B of B, the Subset B being comprised 

of all triads (2,j,k), the Said Subset B defining the 
dendrite for neuron A, the Said dendrite having 
Straight-line Segments, each of the Said Segments hav 
ing a slope; and 

restricting the Said Subset B in Such a manner that each of 
the Said slopes of the Segments of the dendrite is at most 
a fixed positive number that is Smaller than 4. 

11. In a neural network that includes neurons, the method 
of providing activations that Substantially are Sums of Sig 
nals g(x+y|-d)-g(x-y-d), where X and y are outputs of 
two of the said neurons, d and d are constants, and g(.) is 
a function Such that g(q)=q if q>0, else Zero. 

k k k k k 


